
ASYMPTOTIC VALIDITY OF THE BAYES-INSPIRED
INDIFFERENCE ZONE PROCEDURE: THE
NON-NORMAL KNOWN VARIANCE CASE

Saul Toscano-Palmerin
Peter I. Frazier

Cornell University
257 Rhodes Hall
232 Rhodes Hall

Ithaca, NY 14853, USA

ABSTRACT
We consider the indifference-zone (IZ) formulation of the ranking and selection problem in which the goal
is to choose an alternative with the largest mean with guaranteed probability, as long as the difference
between this mean and the second largest exceeds a threshold. Conservatism leads classical IZ procedures
to take too many samples in problems with many alternatives. The Bayes-inspired Indifference Zone
(BIZ) procedure, proposed in Frazier (2014), is less conservative than previous procedures, but its proof
of validity requires strong assumptions, specifically that samples are normal, and variances are known
with an integer multiple structure. In this paper, we show asymptotic validity of a slight modification
of the original BIZ procedure as the difference between the best alternative and the second best goes to
zero, when the variances are known and finite, and samples are independent and identically distributed,
but not necessarily normal.

1 INTRODUCTION
There are many applications where we have to choose the best alternative among a finite number of
simulated alternatives. For example, in inventory problems, we may want to choose the best inventory
policy (s, S) for a finite number of values of s and S. This is called the ranking and selection problem. A
good procedure for addressing this problem should be both efficient and accurate, i.e. it should balance
the number of samples it takes with the quality of its selection.

This paper considers the indifference-zone (IZ) formulation of the ranking and selection problem, in
which we require that a procedure satisfy the IZ guarantee, i.e., that the best system be chosen with
probability larger than some threshold P ∗ given by the user, when the distance between the best system
and the others is larger than some other user-specified threshold δ > 0. The set of problem configurations
satisfying this constraint on the difference in means is called the preference zone. The paper Bechhofer
(1954) is considered the seminal work, and early work is presented in the monograph Bechhofer, Kiefer,
and Sobel (1968). Some compilations of the theory developed in the area can be found in R. E. Bechhofer
(1995), Swisher, Jacobson, and Yücesan (2003), Kim and Nelson (2006) and Kim and Nelson (2007).
Other approaches, beyond the indifference-zone approach, include the Bayesian approach (Frazier 2012),
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the optimal computing budget allocation approach (Chen and Lee 2010), the large deviations approach
(Glynn and Juneja 2004), and the probability of good selection guarantee (Nelson and Banerjee 2001).
The last approach is similar to the indifference-zone formulation, but provides a more robust guarantee.

A good IZ procedure satisfies the IZ guarantee and requires as few samples as possible. The first
IZ procedures presented in Bechhofer (1954), Paulson (1964), Fabian (1974), Rinott (1978), Hartmann
(1988), Hartmann (1991), Paulson (1994) satisfy the IZ guarantee, but they usually take too many
samples when there are many alternatives, in part because they are conservative: their probability of
correct selection (PCS) is much larger than the probability specified by the user (Wang and Kim 2013).
One reason for this is that these procedures use Bonferroni’s inequality, which leads then to sample
more than necessary. The Bonferonni-based bounds underlying these procedures become looser, and
the tendency to take more samples than necessary increases, as the number of alternatives grow. More
recently, new algorithms were developed in Kim and Nelson (2001), Goldsman et al. (2002), Hong
(2006), and they improve performance but they still use Bonferroni’s inequality, and so the methods
are inefficient when there are many alternatives. Procedures in Kim and Dieker (2011), Dieker and
Kim (2012) do not use Bonferroni’s inequality when there are only three alternatives, but again use
Bonferroni’s inequality when comparing more than three alternatives.

In addition to Bonferroni’s inequality, two other common sources of conservatism in indifference-zone
ranking and selection procedures are the change from discrete time to continuous time often used to
show IZ guarantees, and the fact that typically, the configuration under consideration is not a worst-
case configuration (Wang and Kim 2013). The difference between worst and typical cases tends to
contribute the most to conservatism, with Bonferonni’s inequality contributing second-most, and the
continuous/discrete time difference contributing the least (Wang and Kim 2013). Although the dif-
ference between the worst and typical cases is the largest contributor to conservatism, all indifference
zone procedures must meet the PCS guarantee for all configurations in the preference zone, including
worst-case configurations, and so this source of conservatism is fundamental to the indifference-zone for-
mulation. Thus, eliminating the use of Bonferroni’s inequality remains an important route for reducing
conservatism while still retaining the indifference-zone guarantee.

Frazier (2014) presents a new sequential elimination IZ procedure, called BIZ (Bayes-inspired Indif-
ference Zone), that eliminates the use of Bonferroni’s inequality, reducing conservatism. This procedure’s
lower bound on the worst-case probability of correct selection in the preference zone is tight in continuous
time, and almost tight in discrete time. In numerical experiments, the number of samples required by
BIZ is significantly smaller than that of procedures like the P ∗B procedure of Bechhofer, Kiefer, and Sobel
(1968) and the KN procedure of Kim and Nelson (2001), especially on problems with many alternatives.
Unfortunately, the proof from Frazier (2014) that the BIZ procedure satisfies the IZ guarantee for the
discrete-time case assumes that (1) samples are normally distributed; (2) variances are known; and (3)
the variances are either common across alternatives, or have an unrealistic integer multiple structure.

The contribution of this work is to prove the asymptotic validity of the BIZ procedure as δ goes
to zero, retaining the assumption of known variances, but replacing assumptions (1) and (3) by the
much weaker assumption of independent and identically distributed finite variance samples. Thus, our
proof allows a much broader set of sampling distributions than that allowed by Frazier (2014), including
non-normal samples and general heterogeneous variances. We also show that this bound on worst-case
PCS is asymptotically tight as δ goes to zero, showing that the BIZ procedure successfully eliminates
conservatism due to Bonferonni’s inequality in this more general setting, just as was demonstrated by
Frazier (2014) for more restricted settings.

To simplify our analysis, we analyze a slight modification of the version of the BIZ procedure pre-
sented in Frazier (2014), which keeps a certain parameter λ2z fixed rather than letting it vary as did
Frazier (2014). Numerical experiments on typical cases show little difference in performance between
the version of BIZ we analyze and the version in Frazier (2014). We conjecture that a proof technique
similar to the one presented here can be used to show asymptotic validity of the BIZ procedure when
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the variances are unknown, and we present numerical experiments that support this belief.
This paper is organized as follows: In section 2, we recall the indifference-zone ranking and selection

problem. In section 3, we recall the Bayes-inspired IZ (BIZ) procedure from Frazier (2014). In section
4, we present the proof of the validity of the algorithm when the variances are known. In section 5, we
present some numerical experiments. In section 6, we conclude.

2 INDIFFERENCE-ZONE RANKING AND SELECTION
Ranking and Selection is a problem where we have to select the best system among a finite set of
alternatives, i.e. the system with the largest mean. The method selects a system as the best based
on the samples that are observed sequentially over time. We suppose that samples are identically
distributed and independent, over time and across alternatives, and each alternative x has mean µx. We
define µ = (µ1, . . . , µk).

If the best system is selected, we say that the procedure has made the correct selection (CS). We
define the probability of correct selection as

PCS (µ) = Pµ (x̂ ∈ arg maxxµx)

where x̂ is the alternative chosen by the procedure and Pµ is the probability measure under which
samples from system x have mean µx and finite variance λ2x.

In the Indifference-Zone Ranking and Selection, the procedure is indifferent in the selection of a
system whenever the means of the populations are nearly the same. Formally, let µ = [µ1, . . . , µk] be
the vector of the true means, the indifference zone is defined as the set

{
µ ∈ Rk : µ[k] − µ[k−1] < δ

}
. The

complement of the indifference zone is called the preference zone (PZ) and δ > 0 is called the indifference
zone parameter. We say that a procedure meets the indifference-zone (IZ) guarantee at P ∗ ∈ (1/k, 1)
and δ > 0 if

PCS (µ) ≥ P ∗ for all µ ∈ PZ (δ) .

We assume P ∗ > 1/k because IZ guarantees can be meet by choosing x̂ uniformly at random from
{1, . . . , k}.

3 THE BAYES-INSPIRED IZ (BIZ) PROCEDURE
BIZ is an elimination procedure. This procedure maintains a set of alternatives that are candidates
for the best system, and it takes samples from each alternative in this set at each point in time. At
beginning, all alternatives are possible candidates for the best system, and over the time alternatives
are eliminated. The procedure ends when there is only one alternative in the contention set and this
remaining alternative is chosen as the best. It is shown in Frazier (2014) that the algorithm ends in a
finite number of steps with probability one.

Frazier (2014) shows that the BIZ procedure satisfies the IZ guarantee under the assumptions that
samples are normally distributed, variances are known, and the variances are either common across
alternatives, or have an integer multiple structure. The continuous time version of this procedure also
satisfies the IZ guarantee, with a tight worst-case preference-zone PCS bound.

A slight modification of the discrete-time BIZ procedure for unknown and/or heterogeneous sampling
variances is given below. This algorithm takes a variable number of samples from alternative x at time t,
and ntx is this number (its definition may found in the algorithm given below). This algorithm depends
on a collection of integers B1, . . . , Bk, P ∗, c, δ and n0. Here, n0 is the number of samples to use in
the first stage of samples, and 100 is the recommended value for n0 when the variances are unknown.
The paramater Bx controls the number of samples taken from system x in each stage. To simplify

3



our analysis, the procedure presented is a slight modification of the original BIZ procedure (Frazier
2014) where z ∈ arg maxx∈Aλ2x, instead of z ∈ arg minx∈Antx/λ2x. According to numerical experiments
on common cases, there is little difference in the PCS between the version of BIZ we analyze and the
version in Frazier (2014).

For each t, x ∈ {1, . . . , k}, and subset A ⊂ {1, . . . , k}, we define a function

q′tx (A) = exp
(
δβt

Ztx
ntx

)/∑
x′∈A

exp
(
δβt

Ztx′

ntx′

)
, βt =

∑
x′∈A ntx′∑
x′∈A λ̂

2
tx′

where λ̂2tx′ is the sample variance of all samples from alternative x thus far, and Ztx = Yntx,x is the sum
of the samples from alternative x observed by stage t.

Algorithm: Discrete-time implementation of BIZ, for unknown and/or heterogeneous vari-
ances.
Require: c ∈ [0, 1 − (P ∗)

1
k−1 ], δ > 0, P ∗ ∈ (1/k, 1), n0 ≥ 0 an integer, B1, . . . , Bk strictly positive

integers. Recommended choices are c = 1− (P ∗)
1

k−1 , B1 = · · · = Bk = 1 and n0 between 10 and 30.
If the sampling variances λ2x are known, replace the estimators λ̂2tx with the true values λ2x, and set
n0 = 0.

1: For each x, sample alternative x n0 times and set n0x ← n0. Let W0x and λ̂20x be the sample mean
and sample variance respectively of these samples. Let t ← 0. Let z ∈ arg maxx∈Aλ̂2x, where λ̂2x is
the empirical estimator of the variance λ2x using n0 samples if x ∈ A.

2: Let A← {1, . . . , k}, P ← P ∗.
3: while x ∈ maxx∈Aq′tx (A) < P do
4: while minx∈Aq′tx (A) ≤ c do
5: Let x ∈ arg minx∈Aqtx (A).
6: Let P ← P/(1− qtx (A)).
7: Remove x from A.
8: end while
9: For each x ∈ A, let nt+1,x = ceil

(
λ̂2tx(ntz +Bz)/λ̂

2
tz

)
.

10: For each x ∈ A, if nt+1,x > ntx, take nt+1,x−ntx additional samples from alternative x. Let Wt+1,x

and λ̂2t+1,x be the sample mean and sample variance respectively of all samples from alternative x
thus far.

11: Increment t.
12: end while
13: Select x̂ ∈ arg maxx∈AZtx/ntx as our estimate of the best.

This algorithm generalizes the BIZ procedure with known common variance. In that case, we have
that B1 = · · · = Bk = 1 and ntx = t. The algorithm can be generalized to the continuous case (see
Frazier (2014)).

4 ASYMPTOTIC VALIDITY WHEN THE VARIANCES ARE
KNOWN

In this section we prove that the BIZ procedure satisfies asymptotically the IZ guarantee when the
variances are known. This means that we consider a collection of ranking and selection problems
parametrized by δ > 0. For the problem given δ, we suppose that the vector of the true means
µ = [µ1, . . . , µk] is equal to δa for some fixed a ∈ Rk that does not depend on δ and ak > ak−1 ≥ · · · ≥ a1,
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ak − ak−1 > 1. Moreover, the variances of the alternatives are finite, strictly greater than zero and do
not depend on δ. We also suppose that samples from system x ∈ {1 . . . , k} are identically distributed
and independent, over time and across alternatives. We also define λ2z := maxi∈{1...,k} λ

2
i .

Any ranking and selection algorithm can be viewed as mapping from paths of the k-dimensional
discrete-time random walk (Ytx : t ∈ N, x ∈ {1, . . . , k}) onto selection decisions. Our proof uses this
viewpoint, noting that the BIZ procedure’s mapping from paths onto selections decisions is the compo-
sition of three simpler maps.

The first mapping is from the raw discrete-time random walk (Ytx : t ∈ N, x ∈ {1, . . . , k}) onto a time
changed version of this random walk, written as (Ztx : t ∈ N, x ∈ {1, . . . , k}), where we recall Ztx = Yntx,x
is the sum of the samples from alternative x observed by stage t.

The second one maps this time-changed random walk through a non-linear mapping for each t, x
and subset A ⊂ {1, . . . , k}, to obtain

(
q
′
tx (A) : t ∈ N, A ⊂ {1, . . . , k} , x ∈ A

)
, where

q′tx (A) = exp
(
δβt

Ztx
ntx

)/∑
x′∈A

exp
(
δβt

Ztx
ntx

)
:= q′ ((Ztx : x ∈ A) , δ, t)

where we note that nx (t) and βt are deterministic in the version of the known-variance BIZ procedure
that we consider here.

The third one maps the paths of
(
q
′
tx (A) : t ∈ N, A ⊂ {1, . . . , k} , x ∈ A

)
onto selection decisions.

Specifically, this mapping begins with A0 = {1, . . . , k}, P0 = P ∗, and finds the first time τ1 that q′tx(A0)
falls above the threshold P0, or below the threshold c. If the first case occurs, the alternative with the
largest q′τ1,x(A0) is selected as the best. If the second case occurs, the alternative with the smallest
q′τ1,x(A0) is eliminated, resulting in a new set A1, a new selection threshold P1 is calculated from P0

and the eliminated alternative’s value of q′τ1,x(A0), and the process continues. This process is repeated
until an alternative is selected as the best. Call this mapping h, so that the BIZ selection decision is
h
((
q
′
tx (A) : t ∈ N, A ⊂ {1, . . . , k} , x ∈ A

))
.

4.1 Proof Outline

Based on this view of the BIZ procedure as a composition of three maps, we outline the main ideas of
our proof here.

Our proof first notes that the same selection decision is obtained if we apply the BIZ selection map
h to a time-changed version of

(
q
′
tx (A) : t ∈ N, A ⊂ {1, . . . , k} , x ∈ A

)
, specifically to(

qtx (A) : t ∈ δ2N, A ⊂ {1, . . . , k} , x ∈ A
)
,

where qtx (A) := q′
((
Z t
δ2
x : x ∈ A

)
, δ, t

)
.

This discrete-time process is interpolated by the continuous-time process

(qtx (A) : t ∈ R, A ⊂ {1, . . . , k} , x ∈ A) . (1)

If we apply the BIZ selection map h to this continuous-time process, the selection decision will differ
from BIZ’s selection decision for δ > 0, but we show that this difference vanishes as δ → 0. Thus, our
proof focuses on showing that, as δ → 0, applying the BIZ selection map h to (1) produces a selection
decision that satisfies the indifference-zone guarantee.

To accomplish this, we use a functional central limit theorem for Z t
δ2
x, which shows that a centralized

version of Z t
δ2
x converges to a Brownian motion as δ goes to 0. This centralized version of Z t

δ2
x is

Cx (δ, t) :=
Ynx(t),x − tλ2xµx

λ2x
λzδ

.

5



Rewriting Z t
δ2
x in terms of Cx (δ, t) and substituting into the definition of qtx(A) provides the expression

qtx (A) = q

((
Cx (δ, t)

λ2x
δλ2z

+
λ2x
λ2z

(
n0 +

t

δ2

)
δax : x ∈ A

)
, δ, t

)
. (2)

We will construct a mapping f (·, δ) that takes as input the process (Cx (δ, t) : x ∈ {1, . . . , k}, t ∈ R),
calculates (1) from it, applies the BIZ selection map h to (1), and then returns 1 if the correct selection
was made, and 0 otherwise. Thus, the correct selection event that results from applying the BIZ selection
map h to (1) is the result of applying the mapping f (·, δ) to the paths t 7→ Cx (δ, t) .

With these pieces in place, the last part of our proof is to observe that (1) C (δ, ·) converges to a
multivariate Brownian motionW as δ goes to 0; (2) the function f has a continuity property that causes

f (C (δ, ·) , δ)⇒ g (W )

where g is the selection decision from applying the BIZ procedure in continuous time; and (3) the BIZ
procedure satisfies the IZ guarantee when applied in continuous time (Theorem 1 in Frazier (2014)),
and so E[g(W )] ≥ P ∗ with equality for the worst configurations in the preference zone.

4.2 Preliminaries for the Proof of the Main Theorem

In this section, we present preliminary results and definitions used in the proof of the main theorem:
first, a central limit theorem Corollary 1; second, definitions of the functions f(·, δ) and g(·); third, a
continuity result Lemma 2; and fourth, a result Lemma 3 that allows us to change from discrete-time
processes to continuous-time processes.

First, we are going to see that the centralized sum of the output data Cx(δ, t) converges to a Brownian
motion in the sense of D∞ := D[0,∞), which is the set of functions from [0,∞) to R that are right-
continuous and have left-hand limits, with the Skorohod topology. The definition and the properties of
this topology may be found in Chapter 3 of Billingsley (1999).

We briefly recall the definition of convergence of random paths in the sense of D∞. Suppose that we
have a sequence of random paths (Xn)∞n≥0 such that Xn : Ω → D∞ where (Ω,F ,P) is our probability
space. We say that Xn ⇒ X0 in the sense of D∞ if Pn ⇒ P0 where Pn : D∞ → [0, 1] are defined as
Pn [A] = P [X−1n (A)] for all n ≥ 0 and D∞ are the Borel subsets for the Skorohod topology.

The following lemma shows that the centralized sum of the output data with t changed by t/δ2

converges to a Brownian motion in the sense of D∞.

Lemma 1. Let x ∈ {1 . . . , k}, then
Cx (δ, ·)⇒ Wx (·)

as δ → 0 in the sense of D[0,∞), where Wx is a standard Brownian motion.

Proof. By Theorem 19.1 of Billingsley (1999),

Ynx(t),x − floor
(
λ2x
λ2z

(
· 1
δ2

))
µx

λ2x
λz

√
1
δ2

⇒ Wx (·)

in the sense of D[0,∞).
Fix w ∈ Ω. Observe that

Yfloor
(
λ2x
λ2z

(· 1
δ2

)
)
,x
− floor

(
λ2x
λ2z

(
· 1
δ2

))
µx

λ2x
λz

√
1
δ2

−
Yceil

(
λ2x
λ2z

(· 1
δ2

)
)
,x
− ceil

(
λ2x
λ2z

(
· 1
δ2

))
µx

λ2x
λz

√
1
δ2

→ 0
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uniformly in [0, s] for all s ≥ 0 and then by Theorem A.2

Yceil
(
λ2x
λ2z

(· 1
δ2

)
)
,x
− ceil

(
λ2x
λ2z

(
· 1
δ2

))
µx

λ2x
λz

√
1
δ2

⇒ Wx (·)

in the sense of D[0,∞).

Since
λ2x
λ2z
t 1
δ2
−ceil

(
λ2x
λ2z
t 1
δ2

)
λ2x
λz

√
1
δ2

→ 0 uniformly on [0, s] for every s ≥ 0, then by Theorem A.2

Yceil
(
λ2x
λ2z

(· 1
δ2

)
)
,x
−
(
λ2x
λ2z

(
· 1
δ2

))
µx

λ2x
λz

√
1
δ2

⇒ Wx (·) .

Finally, observe that for fixed ω ∈ Ω,

Yceil
(
λ2x
λ2z

(· 1
δ2

)
)
,x
−
(
λ2x
λ2z

(
· 1
δ2

))
µx

λ2x
λz

√
1
δ2

−
Yceil

(
λ2x
λ2z

(· 1
δ2

)+n0
λ2x
λ2z

)
,x
−
(
n0

λ2x
λ2z

+ λ2x
λ2z

(
· 1
δ2

))
µx

λ2x
λz

√
1
δ2

=

Yceil
(
λ2x
λ2z

(· 1
δ2

)
)
,x
− Yceil

(
λ2x
λ2z

(· 1
δ2

)+n0
λ2x
λ2z

)
,x

+
(
n0

λ2x
λ2z

)
µx

λ2x
λz

√
1
δ2

→ 0

uniformly in [0, t] for all t ≥ 0, and so by Theorem A.2 the result follows.

Now, we use the product topology in Dk [0,∞) for k ∈ N. This topology may be described as
the one under which

(
Z1
n, . . . , Z

k
n

)
→
(
Z1

0 , . . . , Z
k
0

)
if and only if Zi

n → Zi
0 for all i ∈ {1, . . . , k}.

See the Miscellany of Billingsley (1968). The following corollary follows from the previous result and
independence.

Corollary 1. We have that

C (δ, ·) := (Cx (δ, ·))x∈A ⇒ W (·) := (Wx (·))x∈A

as δ → 0 in the sense of Dk
∞.

Now that we have obtained this functional central limit theorem for C (δ, ·), we now continue along
the proof outline and define the function f(·, δ) that was sketched there. This function has three parts:
first, computing a “non-centralized” path from an arbitrary input “centralized” path in D [0,∞)k; second,
applying the BIZ selection map h to this non-centralized path; and third, reporting whether selection
was correct or not.

To accomplish the first part, for each F ∈ D [0,∞)k, we define qF,δtx (A) as

qF,δtx (A) = q′
((

Fx (t)
λ2x
δλ2z

+
λ2x
λ2z

(
n0 +

t

δ2

)
δax : x ∈ A

)
, δ, A ⊂ {1, . . . , k}

)
.

Note that if we replace F by C (δ, t), we get qtx (A) in (2).
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To accomplish the second and third parts, we define f (F, δ) to be obtained by applying the BIZ
selection map h to the process

(
qF,δtx (A) : t ∈ R, A ⊂ {1, . . . , k} , x ∈ A

)
, and then reporting whether

the selection was correct. More precisely, f(F, δ) is defined to be

f (F, δ) =

{
1 if h

((
qF,δtx (A) : t ∈ R, A ⊂ {1, . . . , k} , x ∈ A

))
= k,

0 otherwise.

We now construct a function g(·) that, when applied to the path of a k-dimensional standard Brow-
nian motion, will be equal in distribution to the indicator of the correct selection event from the
continuous-time BIZ procedure from Frazier (2014) to a transformed problem that does not depend
on δ.

We construct g analogously to f(·, δ), but we replace the path qF,δtx used in the construction of f(·, δ)
by a new path qFtx that doesn’t depend on δ, and is obtained by taking the limit as δ → 0. This path is

qFtx (A) := exp
(
Fx (t)

λz
+

1

λ2z
tax

)
/
∑
x′∈A

exp
(
Fx′ (t)

λz
+

1

λ2z
tax′

)
.

Then, g is defined to be

g (F ) =

{
1 if h

((
qFtx (A) : t ∈ R, A ⊂ {1, . . . , k} , x ∈ A

))
= k,

0 otherwise.

In the proof of the main theorem, we will show that

f (C (δ, ·) , δ)⇒ g (W )

as δ → 0 in distribution. We will use the following lemma, which shows a continuity property. A proof
of Lemma 2 may be found in a full version of this paper (Toscano-Palmerin and Frazier 2015), which
will be submitted soon to arXiv.

Lemma 2. Let {δn} ⊂ (0,∞) such that δn → 0. If Ds ≡ {Z ∈ D [0,∞)k : if {Zn} ⊂ D [0,∞)k and
limnd∞ (Zn, Z) = 0 , then the sequence {f (Zn, δn)} converges to {g (Z)}}, then P (W∈Ds) = 1.

The following lemma shows that the difference in the correct selection events obtained from applying
the BIZ selection map h to the discrete-time and continuous-time versions of qtx(A) vanish as δ goes
to 0. A proof of Lemma 3 may be found in a full version of this paper (Toscano-Palmerin and Frazier
2015).

Lemma 3. limδ→0 P
(
h
((
q
′
tx (A) : t ∈ N, A ⊂ {1, . . . , k} , x ∈ A

))
= k
)

= limδ→0 P (f (C (δ, t) , δ) = 1).

4.3 The Main Result

Theorem 1. If samples from system x ∈ {1 . . . , k} are identically distributed and independent, over
time and across alternatives, then limδ→0PCS(δ) ≥ P∗ provided µk = akδ, µk−1 = ak−1δ, . . . , µ1 = a1δ,
ak > ak−1 ≥ · · · ≥ a1, ak − ak−1 ≥ 1, and the variances are finite and do not depend on δ.

Furthermore,
inf

a∈PZ(1)
limδ→0PCS(δ) = P ∗

where PZ (1) =
{
a ∈ Rk : ak − ak−1 > 1, ak > ak−1 ≥ · · · ≥ a1

}
.
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Proof. Using the definitions given at the beginning of this section, the selection decision of the discrete-
time BIZ procedure for a particular δ > 0 when µk = akδ, µk−1 = ak−1δ, . . . , µ1 = a1δ is given by

h
((
q
′

tx (A) : t ∈ N, A ⊂ {1, . . . , k} , x ∈ A
))

and the probability of correct selection PCS(δ) is

PCS(δ) = P
(
h
((
q
′

tx (A) : t ∈ N, A ⊂ {1, . . . , k} , x ∈ A
))

= k
)
.

By Lemma 3, we have that

lim
δ→0

PCS(δ) = lim
δ→0

P (f (C (δ, t) , δ) = 1) . (3)

We also have, by Lemma 2 and an extension of the continuous mapping theorem (Theorem 5.5 of
Billingsley (1968)),

f (C (δ, t) , δ)⇒ g (W (t))

in distribution as δ → 0. This implies that

lim
δ→0

P (f (C (δ, t) , δ) = 1) = P (g (W ) = 1) . (4)

The random variable g(W ) is equal in distribution to the indicator of the event of correct selection
that results from applying the continuous-time BIZ procedure from Frazier (2014) in a problem with
indifference-zone parameter equal to 1, where each alternative’s observation process has volatility λz and
drift ax. This can be seen by noting that the path (qWtx (A) : t ≥ 0) defined above is equal in distribution
to the path (qtx(A) : t ≥ 0) defined in equation (2) of Frazier (2014), and that the selection decision of
the continuous-time algorithm in Frazier (2014) is obtained by applying h to this path.

Theorem 1 in Frazier (2014) states that

P (g (W ) = 1) ≥ P ∗. (5)

Combining (3), (4), and (5), we have

lim
δ→0

PCS(δ) ≥ P ∗.

Furthermore, Theorem 1 in Frazier (2014) shows that

infa∈PZ(1)P (g (W ) = 1) = P ∗ (6)

where PZ (1) =
{
a ∈ Rk : ak − ak−1 ≥ 1

}
.

Combining (3), (4), and (6), shows

inf
a∈PZ(1)

lim
δ→0

PCS(δ) = P ∗.

9
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Figure 1: The PCS of the BIZ procedure versus δ for three different slippage configurations with 100
alternatives and P ∗ = 0.9. We observe in all three examples that the PCS converges to P ∗ as δ goes
to 0. The first example (a) shows typical behavior, where the PCS is above P ∗ for all values of δ. The
second (b) and third (c) examples are atypical, and were chosen specially to illustrate that BIZ can
underdeliver on PCS in slippage configurations when n0 is small and the variance of the best alternative
is much larger than the variance of the other alternatives.

5 NUMERICAL EXPERIMENTS
We now use simulation experiments to illustrate and further investigate the phenomenon characterized by
Theorem 1. Using the version of BIZ described in Section 3 with maximum elimination (c = 1−(P ∗)

1
k−1 ),

we estimate and then plot the PCS as a function of δ. In all examples, P ∗ = 0.9, PCS was estimated
using 10,000 independent replications, and confidence intervals have length at most 0.014.

Our first example, illustrated in Figure 1a, is a known variance slippage configuration where the
variance of the best alternative is 1/4 of the variance of the worst alternative. Specifically, we consider
100 systems with independent normally distributed samples, where µk = δ, µk−1 = 0, . . . , µ1 = 0, δ is
within the interval [0.1, 10], and λ100 = 1, λ99 = 1 + (0.5)(98)

99
, · · · , λ1 = 0.5. Here, n0 = 0. Figure 1a

shows that in this example the IZ guarantee is always satisfied. Moreover, the PCS approaches P ∗ as
δ goes to zero, as predicted by Theorem 1. When δ is big enough, the PCS is almost one because the
difference between the best system and the others is large enough to be easily identifiable by the BIZ
procedure.

Our second example, illustrated in Figure 1b, is an unknown variance slippage configuration where
the variance of the best alternative is 100 times larger than the variance of the other alternatives.
Although Theorem 1 applies only to the known-variance version of BIZ, we conjecture that the unknown-
variance version of BIZ should exhibit similar behavior. In this example, we consider 100 systems with
independent normally distributed samples, where µ100 = δ, µ99 = 0, . . . , µ1 = 0, δ is within the interval
[0.1, 10], and λ100 = 10, λ99 = · · · = λ1 = 1. We set n0 = 15. As δ goes to 0, we observe that the PCS
converges to P ∗, as it did in the known-variance slippage configuration example. In this example, we
have intentionally chosen n0 to be smaller than the recommended value of 100, and have chosen a large
variance for the best system, to cause BIZ to fail to meet the IZ guarantee for δ > 0. Increasing the
parameter n0 typically causes BIZ to meet the IZ guarantee for all δ, and we recommend a larger value
of n0 in practice. The choice of n0, and its impact on PCS, merits further study.

Our third example, illustrated in Figure 1c, uses the same sampling distributions as the second
example, but assumes the variances are known, and sets n0 = 0. The effect of this change, and especially
of setting n0 to 0, is to cause significant underdelivery on PCS for large values of δ. As remarked
above, this example was chosen specially to illustrate that BIZ can underdeliver on PCS in slippage
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configurations when n0 is small, and the variance of the best alternative is much larger than the variance
of the worst alternative. However, as predicted by Theorem 1, the PCS converges to P ∗ as δ grows
small, even in this pathological case.

6 CONCLUSION
We have proved the asymptotic validity of the Bayes-inspired Indifference Zone procedure (Frazier 2014)
when the variances are known. This algorithm has been observed empirically to take fewer samples than
other IZ procedures, especially for problems with large numbers of alternatives, and so characterizing
when it satisfies the indifference-zone guarantee is important for understanding when it should be used
in practice.
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