
Bayes-Optimal Effort Allocation in Crowdsourcing: Bounds and Index Policies

Weici Hu
wh343@cornell.edu

Peter I. Frazier
pf98@cornell.edu

School of Operations Research & Information Engineering
Cornell University
206 Rhodes Hall

Ithaca, NY 14853, USA

Abstract

We consider effort allocation in crowdsourcing,
where we wish to assign labeling tasks to imper-
fect homogeneous crowd workers to maximize
overall accuracy in a continuous-time Bayesian
setting, subject to budget and time constraints.
The Bayes-optimal policy for this problem is the
solution to a partially observable Markov deci-
sion process, but the curse of dimensionality ren-
ders the computation infeasible. Based on the
Lagrangian Relaxation technique in Adelman &
Mersereau (2008), we provide a computation-
ally tractable instance-specific upper bound on
the value of this Bayes-optimal policy, which can
in turn be used to bound the optimality gap of any
other sub-optimal policy. In an approach similar
in spirit to the Whittle index for restless multi-
armed bandits, we provide an index policy for
effort allocation in crowdsourcing and demon-
strate numerically that it outperforms other state-
of-arts and performs close to optimal solution.

1 Introduction

Crowdsourcing can accomplish large-volume tasks such as
image classification or document relevance assessment by
using large pool of amateur workers at much less expense
than is possible by hiring experts or by developing an au-
tomatic machine learning method (Karger et al., 2011).
Moreover, online platforms such as Amazon Mechani-
cal Turk make crowdsourcing service widely accessible
by providing a marketplace in which requesters may post
tasks, which crowd-workers may complete in exchange for

Preliminary work. Under review by AISTATS 2016. Do not dis-
tribute.

money. These factors are making crowdsourcing increas-
ingly important.

Although crowdsourcing is less expensive than hiring ex-
perts, the number of images or other tasks that a requester
can correctly label or process is nonetheless limited by his
or her budget. This fact is compounded by the noise and
variability inherent to crowd-workers’ responses, which
typically requires a single item to be processed indepen-
dently several times by multiple workers.

In this paper, our goal is to find a sequential allocation of
workers to tasks that most accurately supports a correct ag-
gregated label for each task, subject to a limited budget
(which in turn limits the number of workers that a requester
can hire) and a limited time horizon. In this paper we fo-
cus on binary labeling tasks, but our approach can also be
extended to multi-class labeling.

Intuitively, much can be accomplished through a sophisti-
cated allocation of worker effort: When budgets are large
relative to the overall difficulty of the tasks to be accom-
plished, a good scheme should allocating more workers to
those tasks that are more difficult, so that uniform quality
can be ensured. When budgets are small, however, those
most difficult tasks should be abandoned so that the bulk
of the budget can be used to ensure that at least those easy
tasks are done correctly.

We adopt a Bayesian approach, which is natural in crowd-
sourcing because: 1) It allows us to leverage prior infor-
mation about the tasks to be accomplished, which may be
learned in the crowdsourcing setting from features associ-
ated with each task and the typically large collections of
historical data collected in previous crowdsourcing cam-
paigns; 2) It seeks to maximize average-case performance
with respect to the prior distribution, which is natural in
crowdsourcing where requesters typically tolerate some
variability in quality, and are most interested in maximiz-
ing aggregate performance across a large volume of tasks,
rather than ensuring robustness to some worst-case distri-
bution over task characteristics, or studying asymptotic be-

ar
X

iv
:1

51
2.

09
20

4v
1

 [
cs

.L
G

]
 3

1
D

ec
 2

01
5

Manuscript under review by AISTATS 2016 2

haviors that do not become relevant until the number of
workers working on each task grows large.

Within this Bayesian framework, we formulate and study
sequential effort allocation as a partially observable
Markov decision process, using tools from dynamic pro-
gramming. While the curse of dimensionality (Powell,
2007) prevents solving this dynamic program to optimality,
we provide a computationally tractable upper bound on the
expected performance under any Bayes-optimal effort allo-
cation policy. Upper bounds are useful because they allow
evaluating the optimality gap for any given heuristic on any
problem instance, simply by simulating the heuristic and
comparing its performance to the bound. The technique we
use to obtain such upper bound is the Lagrangian Relax-
ation on weakly coupled dynamic programs discussed in
Adelman & Mersereau (2008) and Hawkins (2002). The
proofs we present in Section 5 are very similar in spirit to
Adelman & Mersereau (2008), but while Adelman based
his proof on the value functions of the DP formulation in a
infinite horizon setting, we offer a proof based on the ini-
tial objective function of the problem in a finite horizon
setting. Nonetheless, our crowdsourcing model is a spe-
cific application of the more general formulation in Adel-
man & Mersereau (2008) and Hawkins (2002). Then, us-
ing Lagrange multipliers that appear in this upper bound,
we derive an index-based heuristic policy that is similar
in spirit to the Gittins index policy for multi-armed ban-
dits Gittins (1989) and the Whittle index policy for restless
bandits Whittle (1988). We then show that this index policy
has performance close to the upper bound in numerical ex-
periments, and also outperforms other state-of-art policies
for resource allocation .

Although the primary novelty and contribution of our paper
is that it is the first to characterize the performance of the
Bayes-optimal policy for effort allocation in crowdsourc-
ing, and to develop Bayesian bandit-style index policies,
our work is also novel is modeling the asynchronous na-
ture of crowd-work in a continuous-time setting, in contrast
with previous work on effort allocation in crowdsourcing
that assumed instant completion of tasks (Yan et al., 2011),
(Chen et al., 2013), (Karger et al., 2013a). This model is
inspired by how crowd-workers are employed on Amazon
Mechanical Turk; allowing an asynchronous process thus
gives a closer proximity to the real situations.

2 Related Work

There are two major strands of former works to which our
work is related. The first is the work on effort allocation
and crowd labeling. Much of this work adopts a frequentist
viewpoint and focuses on error bounds for inference Karger
et al. (2013b); Ghosh et al. (2011); Karger et al. (2011);
Thanh et al. (2013); Ho et al. (2013). Karger et al. (2013b)
proposed an allocation algorithm based on a random graph,

and while its performance asymptotically order-optimal,
one needs a very large number of workers to make this rele-
vant. Thanh et al. (2013) incorporates a limited budget, but
lacks the notion of optimality. None of the work above con-
siders a finite time horizon. There is also work with more
of a Bayesian flavor(Yan et al. (2011); Bacharach et al.
(2013)). While they focused on the efficiency of alloca-
tion, they did not consider an optimal solution. Among the
work that adopt a Bayesian framework, our work is simi-
lar to Chen et al. (2011) in that we both form an optimal
policy in the form of a stochastic dynamic program. Al-
though they also provide a well-motivated heuristic policy,
our work pushes further by deriving an upper bound based
on this formulation of optimal policy.

The second strand resides in the literature of Multi-armed
bandit (MAB) and stochastic dynamic programming. The
formulation a Bayesian-optimal procedure as a dynamic
program is considered in Lovejoy (1991); Monahan (1982).
Our use of Lagrangian relaxation is an application of the re-
laxation method of weakly coupled dynamic program dis-
cussed in (Adelman & Mersereau, 2008). The setting in
this paper differs from the previous works by that only one
task is to be assigned when a worker enters and the comple-
tion of task is not instant. The index-based policy proposed
in this paper, which uses Lagrangian Multipliers to assign
indices, draws inspiration from Whittle (1988).

3 Problem Statement

We consider a requester of crowdsourcing service with K
independent binary labeling tasks. Due to a budget con-
straint, the requester allows a maximum of U workers to
work on these tasks, and requires all work to be completed
by a time horizon T . We model the arrival of workers to
the crowdsourcing system by a Poisson process with rate r.
(Our model can be generalized to non-homogeneous Pois-
son processes with little additional effort.)

As each worker enters the system, the requester selects
one of the K tasks for the worker to label. We let z` ∈
{1, . . . ,K} indicate the task assigned to the `th worker.
(We use [K] to denote {1, . . . ,K} for the rest of the pa-
per.) The worker spends a random Exponential(µ) amount
of time on the task x, independent of all else, and then pro-
vides a binary label y`.

Workers do not always give the correct label because the
task may be ambiguous and thus hard to categorize, or
workers may be careless or lack background information
when they conduct the labeling process. We suppose that
workers are “homogeneous” (a term used in Chen et al.
(2013)), and give noisy but unbiased labels. More specif-
ically, each task x has an associated unknown value θx ∈
[0, 1], which is the underlying probability that it will be la-
beled as positive by a worker. The distribution of the label

Manuscript under review by AISTATS 2016 3

generated by the `th worker given θ1, ...θK and z` is

y`|θ1:K , z` ∼ Bernoulli(θz`). (1)

We set a known threshold value dx, and consider the label
for task x being positive if θx > dx. We let B = {x : θx >
dx} be the set of tasks whose correct label is positive. Note
B is unknown as θx are unknown.

For analytical convenience we use the Beta distribution,
which is the conjugate prior of the Bernoulli distribution,
as the prior for each θx independent across all x.

θx ∼ Beta(α0,x, β0,x).

With the assumption of this independent beta prior on each
θx, and the conditionally independent Bernoulli responses
as in (1), the posterior on θx after some number of workers
have provided responses will remain beta-distributed, with
first parameter equal to the sum of α0,x and the number of
positive responses, and the second parameter equal to the
sum of β0,x and the number of negative responses. In prac-
tice, one can estimate appropriate values for the parameters
α0,x and β0,x from historical data on tasks previously la-
beled by the crowd. We discuss this further in section 7
where numerical experiments are performed.

Note the assumption of a Beta distribution can be relaxed
without a great deal of difficulty, as the posterior distribu-
tion will remain in an exponential family parameterized by
the number of positive and negative labels observed for the
instance. The assumption of independence cannot be easily
generalized, as it is necessary for the decomposition in our
Lagrangian relaxation, without which the upper bound in
Section 5 much more challenging to compute.

Thus, after the worker budget U has been exhausted or the
time horizon T has elapsed, the requester will have a poste-
rior distribution on each θx which remains beta-distributed.
Let α′x, β′x be the posterior parameter for this time. At this
time, we model the requester as choosing, for each task
x, an estimated label based on the responses of the crowd-
workers, and then receiving a reward of 1 for each correctly
labeled task, and 0 for the incorrectly labeled tasks. (Our
approach can be easily generalized to other reward or loss
structures that are additive across tasks, and depend only
on θx and some task-specific estimate based on the crowd’s
feedback.)

The expected reward under the posterior that the requester
will obtain is P(θx > dx|α′x, β′x), if s/he chooses a positive
label, and P(θx < dx|α′x, β′x) if s/he chooses a negative la-
bel (θx has a density, and so θx = dx with a posterior prob-
ability of 0). Thus, the requester chooses the label giving
the larger reward, and achieves a reward whose expected
value under the posterior is,

R(α′x, β
′
x) = max

{
P[θx>dx|α′x, β′x],P[θx<dx|α′x, β′x]

}
,

Across all tasks, the requester’s expected reward under the
posterior is

R(ααα′,βββ′) =

K∑
x=1

R(α′x, β
′
x), (2)

where ααα′ = (α′x : x ∈ [K]) and similarly for βββ′.

The goal of the requester is to design a policy to dynam-
ically assign tasks to workers entering the system so as to
maximize the expected reward received, based on the labels
obtained from the crowd-workers.

4 Dynamic Programming Formulation

We now formalize the problem statement from Section 3 as
control of a continuous-time Markov chain, which can be
analyzed through a stochastic dynamic program built on the
embedded discrete-time Markov chain. This continuous-
time Markov chain tracks the evolution of worker assign-
ments and posterior distributions on θx that results from a
requester’s dynamic assignment policy.

The state of this continuous-time Markov chain contains:

• length-K vectors ααα = (α1, . . . , αK) and βββ =
(β1, . . . , βK) that will describe the posterior distri-
bution on each θx given the labels observed thus far
(θx will be distributed according to Beta(αx, βx) un-
der this posterior).

• a length-K vector w = (w1, ..., wK) that tracks the
number of workers currently working on each task.

• an integer ` that tracks the number of workers that
have entered the system and been assigned to tasks
(but not necessarily completed them).

• the time t of the most recent event, either a worker
completing a task, or a worker arriving.

We indicate such a generic state by s = (ααα,βββ, t,w, l) and
let S = RK × RK × R × NK × N be the set of possible
values this state can take. We letααα(s), βββ(s), t(s), w(s) and
`(s) all indicate the corresponding components of s.

Transitions occur in this Markov chain when workers com-
plete tasks, and when workers arrive to start work on a task.
We use n to count the number transitions (or “events”), we
let Sn ∈ S indicate the state just after the nth event, for
n ≥ 1. The initial state is S0 = (ααα0,βββ0, 0,000, 0), where
ααα0 = (α0,x : x ∈ [K]) and βββ0 = (β0,x : x ∈ [K]) together
describe the prior distribution, and 000 is a vector of K zeros.

We let ∆n denote the time duration between event n and
n + 1, i.e., ∆n = t(Sn+1) − t(Sn). Then, ∆n|Sn ∼
Exp(µ

∑K
x=1 wx(Sn) + r).

Manuscript under review by AISTATS 2016 4

We define a policy π that controls how the requester assigns
incoming workers to tasks, based on the current state. This
policy π will map Sn and ∆n onto {0, 1}K , and π(Sn,∆n)
will give the number of new workers assigned to each of the
K tasks, if the transition from Sn to Sn+1 was caused by
an arriving worker. Below we will constrain this to prevent
assigning more than one task to a worker, and then later in
the Lagrangian relaxation we will relax this constraint.

Formally, let Π be the set of all measurable functions from
S×R+ to {0, 1}K . Then, let |·| return the sum of individual
components of a vector, and define

Π0 = {π ∈ Π : |π(s,∆)| ≤ 1,∀s ∈ S, t ∈ R}, (3)

where we have added the additional constraint to Π that at
most one task can be assigned to an incoming worker. Only
those π ∈ Π0 will be feasible policies for the problem of
interest, but we will consider the larger set of policies Π to
support later theoretical analysis.

The set of policies Π0 allows not assigning an incoming
worker to a task even when budget or time remains, but we
will see below that this will still exhaust one unit of bud-
get, and so optimal policies (or reasonable heuristics) will
always assign incoming workers to tasks when possible.

Each π ∈ Π defines a discrete time Markov chain (Sn :
n ∈ {0, 1, . . .}) over the state space S, whose transition
kernel we will indicate by Pπ(s′|s). This transition kernel
can be written as

Pπ(s′|s) =

∫ ∞
0

Pπ(s′|s,∆) exp(−∆q(s)) d∆,

where we have defined

q(s) = µ

K∑
x=1

wx(s) + r.

Thus, to complete the description of this transition kernel, it
is sufficient to describe Pπ(Sn+1|Sn,∆). For this descrip-
tion we suppose Sn = (ααα,βββ, t,w, `) and let q = q(Sn).

When t + ∆n ≥ T , the system has exceeded its time
horizon, all outstanding tasks on which workers are cur-
rently working are canceled, and only the time is updated:
Sn+1 = (ααα,βββ, t+ ∆n,000, `).

When t+ ∆n < T , time remains and the next event can be
either a worker arrival or a worker completion. A comple-
tion either outputs a positive result or a negative result.

A worker arrives with probability r/q. If ` < U , then
the requester allocates this worker to a task, and the to-
tal number of arrivals is incremented: Sn+1 = (ααα,βββ, t +
∆n,w+π(Sn,∆n), `+1). If ` ≥ U , then the worker bud-
get has been exceeded, and the requester cannot allocate
the worker, so Sn+1 = (ααα,βββ, t+ ∆n,w,∆n), `).

For each x ∈ [K], a worker completes this task x and re-
ports a positive label with probability αx

αx+βx

µwx

q . When
this occurs, Sn+1 = (ααα+ ex,βββ, t,w − ex, `).

Similarly, a worker completes task x and reports a nega-
tive label with probability βx

αx+βx

µwx

q . When this occurs,
Sn+1 = (ααα,βββ + ex, t,w − ex, `).

This completely specifies the transition kernel for the
discrete-time Markov chain that describes the continuous-
time dynamics of both worker allocation and the posterior
distribution on each θx.

To model completion, we then define SA = {s ∈ S :
t(s) ≥ T or (`(s) ≥ U and w(s) = 000)} to be the set of
states in which our time horizon has elapsed, or our worker
budget has been exhausted and all allocated workers have
finished their work. We then let N = inf{n ≥ 0 : Sn ∈
SA} be the number of events that occur up to and includ-
ing the time when we reach a state in SA. The posterior
ααα(SN),βββ(SN) is the one with which the requester must
make his/her final determination of the task labels, and so
the expected reward under the posterior that s/he receives
at time t(SN) is R(ααα(SN),βββ(SN)).

Recall that our goal stated in section 3 was to find the dy-
namic allocation policy π of workers to tasks that max-
imizes the expected number of correctly classified tasks.
With the definition of this Markov chain in place, this over-
arching goal may be stated formally as solving

sup
π∈Π0

Eπ [R(ααα(SN),βββ(SN))] . (4)

As a stochastic control problem, its solution may be charac-
terized using stochastic dynamic programming. We define
the value function as

V (s) = sup
π∈Π0

Eπ [R(ααα(SN),βββ(SN))|S0 = s] , (5)

and observe that the value function satisfies the dynamic
programming recursion.

First, for s ∈ SA, we have V (s) = R(ααα(s),βββ(s)). Then,
for s = (ααα,βββ, t,w, `) /∈ SA and q = q(s), we have, If
` < U :

V (s) =
(

1− exp(−q(T − t))
)
·
[

r

∫ T−t

0

max
z
V (ααα,βββ,t+y,w + ez, `+ 1)e−qydy+

K∑
x=1

µwx
(αx
αx + βx

∫ T−t

0

V (ααα+ex, β, t+y,w−ex, `)e−qydy

+
βx

αx + βx

∫ T−t

0

V (ααα, β+ex, t+y,w−ex, `)e−qydy
)]

+exp(−q(T − t))
{
R(ααα,βββ)

}
. (6)

Manuscript under review by AISTATS 2016 5

If ` ≥ U :

V (s) =
(

1− exp(−q(T − t))
)
·
[

r

∫ T−t

0

V (ααα,βββ,t+ y,w, `)e−qydy+

K∑
x=1

µwx
(αx
αx + βx

∫ T−t

0

V (ααα+ex, β, t+y,w−ex, `)e−qydy

+
βx

αx + βx

∫ T−t

0

V (ααα, β+ex, t+y,w−ex, `)e−qydy
)]

+exp(−q(T − t))
{
R(ααα,βββ)

}
. (7)

Moreover, knowing the value function reveals an optimal
policy: an optimal policy is given by choosing the task
Z` to assign to the next worker, in response to previous
state Sn at time t(Sn) + ∆n, to achieve the maximum in
maxz V (ααα(Sn),βββ(Sn), t(Sn) + ∆n,w(Sn) + ez, `+ 1).

However, solving this dynamic program is computationally
infeasible. For example, if we discretize the continuous
time line to just 1000 intervals, when we haveK = 4 tasks,
the number of states to consider after l = 20 workers enter-
ing the system is 2.26 ∗ 1011, which is too big to compute.
Hence we seek to first provide an upper bound to the opti-
mal value and then use the upper bound as the yardstick to
measure how close a heuristic policy performs to an opti-
mal policy.

5 Upper Bound on the Bayes-Optimal Policy

Although solving (4) directly using the stochastic dynamic
program (6),(7) is computationally intractable, in this sec-
tion we show how to obtain a computationally feasible up-
per bound on the value (4) using a Lagrangian relaxation.

Recall we use n to count events and Sn is the state cor-
responding to the nth event. Define n` as the number of
events that have occurred by the time of the `th arrival (in-
clusive), i.e., n` = inf{n : `(Sn) = `}. For 1 ≤ ` ≤ U ,
define a` = π(Sn`−1,∆n`−1), so that a`,x = 1 if the
`th worker is assigned to task x. Therefore Π0 satisfies
Π0 = {π ∈ Π : Pπ(

∑K
x=1 a`,x ≤ 1) = 1 ∀`}. We also

define a new subset of Π:

Π1 =

{
π ∈ Π : Eπ

[
K∑
x=1

a`,x

]
≤ 1 ∀`

}
. (8)

Under Π1, we may assign a worker to more than one task
along a particular sample path, as long as the expected num-
ber of tasks assigned to each worker is no larger than 1.
Returning to our Markov chain model, we will observe that
when a worker is assigned more than one task, the tasks are
completed independently from each other. Observe that Π1

includes a larger set of policies than Π0, and that Π includes
a set that is larger still, i.e., Π0 ⊆ Π1 ⊆ Π. Our result will
use this relation.

To streamline notation, let R = R(ααα(SN),βββ(SN)). The
optimal reward for the original crowdsourcing problem (4)
is then,

R0 = sup
π∈Π0

Eπ [R] , (9)

and the optimal reward under the larger class of policies Π1

is
R1 = sup

π∈Π1

Eπ [R] . (10)

Here we introduce a non-negative vector λλλ =
{λ1, ..., λU} ≥ 0, which we use below as a Lagrange
multiplier within a Lagrangian relaxation.

More specifically, we will relax the constraint that each
worker is assigned to at most one task, but will penalize
the number of tasks assigned in a way that ensures that an
upper bound holds regardless of what λλλ is (as long as it
is componentwise-nonnegative). This will then provide an
upper bound on the optimal value of the original problem
R0, which can be made tighter by minimizing over λλλ. This
upper bound can then be computed below via decompo-
sition into K small dynamic programs of fixed dimension
that can be solved efficiently, even as K grows large.

Our upper bound is provided in the following theorem.

Theorem 1. The term

inf
λλλ≥0

sup
π∈Π

Eπ
[
R−

U∑
`=1

(λ`
∑
x

a`,x)
]

+

U∑
`=1

λ` (11)

forms an upper bound to R0.

Proof.

sup
π∈Π

Eπ
[
R−

U∑
`=1

(λ`
∑
x

a`,x)
]

+

U∑
`=1

λ`

= sup
π∈Π

Eπ
[
R−

U∑
`=1

(
λ`(
∑
x

a`,x − 1)

)]

≥ sup
π∈Π1

Eπ
[
R−

U∑
`=1

(
λ`(
∑
x

a`,x − 1)

)]

= sup
π∈Π1

Eπ [R]−
U∑
`=1

λ`

(
Eπ[
∑
x

a`,x]− 1

)
≥ sup
π∈Π1

Eπ [R]

≥ sup
π∈Π0

Eπ [R] (12)

The first inequality is due to Π1 ⊆ Π. The second inequal-
ity is because λλλ ≥ 0 and Eπ[

∑
x a`,x] ≤ 1 for any π ∈ Π1.

The third inequality is due to Π0 ⊆ Π1. Since (12) holds
true for any value of λλλ > 0, we obtain Theorem 1.

Calculating the supremum term in Theorem 1 directly by
dynamic programming is again computationally infeasible,

Manuscript under review by AISTATS 2016 6

because the state space of this dynamic program again is
over all of S, which has 3K + 1 dimensions. We avoid this
issue by decomposing this supremum term into the sum of
the optimal values for K dynamic programs, one for each
task, each of which has a much more manageable 4 dimen-
sions.

To support this decomposition, we write the state Sn ∈ S
for the whole system (K tasks) as Sn = (Sn,1, . . . , Sn,K),
where Sn,x is the state for task x when n events have oc-
curred, and includes αx, βx, t, wx, and the global counter
`. We let S(x) = R×R×R×N×N be the set of possible
values for this single-task state Sn,x.

Following a development identical to that in Section 4, but
for the single task x, we may define a space of policies
π(x) that map the single-task state Sn,x and the elapsed
time since the last event ∆

(x)
n (counting worker arrivals

over the whole system, and completions of task x only)
onto a binary decision of whether or not to allocate an in-
coming worker to task x, so that π(x)(Sn,∆n) ∈ {0, 1}.
Following this development, we construct K independent
Markov chains, one for each task, where each one is con-
trolled by its respective single-task policy π(x). We de-
fine N as before, to be the first time that the time hori-
zon elapses, or our worker budget has been exhausted and
all outstanding workers have completed their work. We
then letRx = R(αx(SN), βx(SN)) be the reward obtained
from this the single task at this time.

The following theorem shows that the bound in Theorem 1
can be re-written in terms of the sum of solutions of single-
task dynamic programming problems, where each obtains
the rewardRx, and is penalized for assigning workers to its
task.

Theorem 2.

inf
λλλ≥0

K∑
x=1

sup
π(x)∈Π(x)

Eπ
(x)
[
Rx −

U∑
`=1

λ`a`,x

]
+

U∑
`=1

λ` (13)

forms an upper bound on R0.

Proof. For any λλλ ≥ 0:

sup
π∈Π

Eπ[R−
U∑
`=1

(λ`
∑
x

a`,x)]

= sup
π∈Π

Eπ[

K∑
x=1

Rx −
K∑
x=1

U∑
`=1

λ`a`,x]

= sup
π∈Π

Eπ
[K∑
x=1

(
Rx −

U∑
`=1

λ`a`,x

)]
= sup
π∈Π

K∑
x=1

Eπ
[
Rx −

U∑
`=1

λ`a`,x

]
.

This is bounded above by,

K∑
x=1

sup
π∈Π

Eπ
[
Rx −

U∑
`=1

λ`a`,x

]
=

K∑
x=1

sup
π(x)∈Π(x)

Eπ
(x)
[
Rx −

U∑
`=1

λ`a`,x

]
. (14)

The equality at (14) is because supπ∈Π Eπ
[
Rx −∑U

`=1 λ`a`,x

]
depends only on (αt,x, βt,x, wt,x : 0 ≤ t ≤

T), which is in turn governed by π(x). By Theorem 1, for
any λλλ ≥ 0,

K∑
x=1

sup
π(x)∈Π(x)

Eπ
(x)
[
Rx −

U∑
`=1

λ`a`,x

]
+

U∑
`=1

λ`

forms an upper bound on R0. This hold for any λλλ ≥ 0, and
so we have thus proved Theorem 2.

Since the state space is much smaller for a single-task sys-
tem, we can use dynamic programming to solve for the
supremum term

sup
π(x)∈Π(x)

Eπ
(x)
[
Rx −

U∑
`=1

λ`a`,x

]
, (15)

for any λλλ value. What remains in the computing of
the upper bound is to solve for the infimum in The-
orem 2. We explore the convexity property of the
problem follow by a binary search. Define B(λ) =∑K
x=1 supπ(x)∈Π(x) Eπ

(x)

0

[
Rx−

∑U
`=1 λ`a`,x

]
+
∑U
`=1 λ`,

which is the upper bound derived in Theorem 2 without the
infimum. First we prove that B(λλλ) is convex in λλλ.

Lemma 1. B(λλλ) is convex in λλλ.

Proof. First note
∑U
`=1 λ` is convex in λλλ. To prove

supπ(x)∈Π(x) Eπ
(x)
[
Rx−

∑U
l=1 λlal,x

]
is convex inλλλ, pick

any λλλ1,λλλ2 ≥ 0 and t ∈ [0, 1] . Let

π′ = sup
π(x)∈Π(x)

Eπ
(x)
[
Rx −

U∑
l=1

(tλ1,l + (1− t)λ2,l)al,x

]
(16)

Manuscript under review by AISTATS 2016 7

We have

t sup
π(x)∈Π(x)

Eπ
(x)
[
Rx −

U∑
l=1

λ1,lal,x

]
+(1− t) sup

π(x)∈Π(x)

Eπ
(x)
[
Rx −

U∑
l=1

λ2,lal,x

]
≥tEπ

′
[
Rx −

U∑
l=1

λ1,lal,x

]
+ (1− t)Eπ

′
[
Rx −

U∑
l=1

λ2,lal,x

]
=Eπ

′
[
Rx −

U∑
l=1

(tλ1,l + (1− t)λ2,l)al,x

]
= sup
π(x)∈Π(x)

Eπ
(x)
[
Rx −

U∑
l=1

(tλ1,l + (1− t)λ2,l)al,x

]
.

Hence supπ(x)∈Π(x) Eπ
(x)
[
Rx −

∑U
l=1 λlal,x

]
is con-

vex in λλλ for any x ∈ [K], subsequently the sum of
supπ(x)∈Π(x) Eπ

(x)
[
Rx −

∑U
l=1 λlal,x

]
across x is also

convex in λλλ. Thus we complete the proof that B(λλλ) is con-
vex in λλλ.

With the convexity in λλλ, we approximate λλλ′ that achieves
the infimum by setting λλλ′ = λ′ × (1, , , 1), and use a Fi-
bonacci search to find the infimum. Here we constrain all
the units of λλλ′ to be the same for simpler computation, a
tighter bound can be obtained by allowing each unit of λλλ′

to vary and use sub-gradient descent to locate the infimum.

6 Index Policy

We introduce an index-based heuristic policy built on the
Lagrangian relaxation we used in proving the upper bound.
In this policy, we compute some λ∗x for each task x based
on its state Sn,x, such that λ∗x is the greatest value of λ that
the optimal policy will decide to hire the worker on state
Sn,x when solving (15) with λλλ = λ1, 1 = (1, . . . , 1). We
then assign the incoming worker to the task with the highest
λ∗. The intuition behind this policy is that in a single-task
problem described by (15), we view λ` as a cost of employ-
ing the `th worker. As λ` increases, our decision switches
from hiring the worker to not hiring, where the switching
point is at λ∗x. Hence tasks with a high λ∗x are the tasks
that are worth hiring more workers to work on. Below we
present the algorithm in a more formal way. A useful tech-
nique to reduce the amount of computation is to put a cap
on the total number of workers that can be assigned to a
task, for this reduces the size of the state space of the dy-
namic program involved in solving for (15). This additional
cap does not affect the decision made by the Index Policy.
Intuitively it is unlikely for any reasonable policy to assign
all the U number of workers to one task, so it is unlike for
any task to get more than a certain number of workers as-
signed. One can check the validity of the cap by running

Algorithm 1 Index Policy
1: while ` < U do
2: For each x ∈ {1, . . . ,K}, compute λ∗x = inf{λ ∈

R+ : aλ`,x = 1}, where aλx,` is the optimal decision
from (15) when λλλ = λ1.

3: Let x∗ = arg maxx λ
∗
x. Break tie arbitrarily.

4: Assign task x∗ to the `th worker.
5: end while

simulations with the capped index policy, and see whether
there are tasks that use all the workers that the cap allows.

We show in section 7 that this policy’s performance is close
to optimal.

7 Numerical Experiment

For numerical experiment we concentrate on the case in
which T = ∞. In this case we stop when we reach the
maximum number of workers the budget allows. The Bell-
man’s recursion to compute 15 in the computation of upper
bound for this special case is given in the supplement. In
the first set of simulation study, we compare the perfor-
mances of different policies on simulated data against the
corresponding upper bounds. In the second set of simula-
tion study, we use a real dataset for simulation.

7.1 Simulation using simulated data

In the first set of simulations we evaluate the performance
of the Index Policy using simulated data, and compared the
total reward given in (2) generated by the Index Policy to
the upper bound 11. We also compare the performance of
the Index Policy to Optimistic Knowledge Gradient(OKG)
method (Chen et al., 2011), which is a state-of-art Bayesian
allocation policy. A round of simulated process includes
generating either an arrival of worker or a completion of
task based on the arrival rate r = 0.1 and and completion
rate µ = 0.4 with distributions specified in Section 3. If
it is a completion of task, we generate a label based on the
posterior parameters. The process stops when we exhaust
all the budget, i.e., the number of workers that are allowed
to hire, and we get a reward as in (2). We vary the number
of tasks to be K = 10, 100, 1000, and set the budget to be
U = 1.2K. We use a non-informative prior withααα = 1 and
βββ = 1. We use a threshold dx = 0.5 for all the tasks. For
each value of K = 10, 100, 1000, we simulate the process
5000 times, and obtain a 95% confidence interval for the
simulated total reward. In Figure 1 we show a Semi-log
plot of the number of tasks K against the average reward
per task with the corresponding confidence intervals.

The performance of the index policy is consistently bet-
ter than the OKG policy, especially for smaller number of
tasks. Moreover, the gap between the upper bound and the

Manuscript under review by AISTATS 2016 8

101 102 103

K

0.745

0.750

0.755

0.760
to

ta
l
re

w
a
rd

/K

Upper bound

Index Policy

Okg Policy

Figure 1: Semi-log plot of K against average per task reward
(R/K) for K = 10, 102, 103.

simulated value gets smaller asK increases, which demon-
strates both that the upper bound is tight and the Index Pol-
icy performs close to an optimal policy as the number of
tasks gets larger.

We emphasize that the improved performance over OKG
offered by our Index Policy is only one aspect of the contri-
bution of this work. The other aspect is the tightness of the
upper bound, especially for problem instances with many
tasks. This tight upper bound for K=1200 shows that the
index policy is within 0.03% of optimal, and that contin-
ued algorithmic development will not provide significantly
increased performance for large-scale crowdsourcing prob-
lems with characteristics matching this particular simulated
dataset. The ability to bound the improvement from contin-
ued algorithmic development for a particular problem in-
stance, or class of problem instances, is useful for managers
at companies that use crowdsourcing and wish to allocate
engineering\R&D effort.

7.2 Simulation using real data

This set of simulations uses a real dataset, PASCAL RTE-
1(Snow et al., 2008), which consists of 800 tasks, each
comes with 10 labels obtained from crowdworkers and a
gold standard label. (A gold standard label of a classifi-
cation task is its true label.) We evaluate the performance
of the Index Policy against the OKG policy, the Thomp-
son Sampling (Chapelle & Li, 2002) and a widely used
frequentist approach - the upper confidence bound(UCB)
policy (Auer et al., 2002). (The specific version of UCB
used here is UCB1-tuned.) The metric used to evaluate the
performance is the accuracy score. More specifically, it is
the number of correctly predicted labels over the total num-
ber of tasks. In each round of simulation process, we still
simulate events (either arrival or completion) the same way
as we did in Section 7.1. If the event is a completion, we
read the most recent label for that task in the dataset. At the
end of each process, predicted labels are compared against
the gold standard labels. dx is still 0.5 for all tasks. For
each value of K = 10, 100, 750, we simulate the process

5000 times, and obtain a 95% confidence interval for the
simulated total reward.

Before simulating, we use the remaining 50 tasks from the
RTE dataset as the ‘historical data’ to estimate the parame-
ters of the Beta prior, which is set to be the same across all
tasks. This comes with an assumption that all tasks are ho-
mogeneous, hence a subset of them are representative of a
larger population. We first obtain an estimate of θx for each
of the 45 tasks, then use these empirical values of θx to fit
a Beta distribution by Method of moments. In Figure 2

101 102 103

K

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

A
cc

u
ra

cy
 S

co
re

Upper bound

Index Policy

Okg Policy

UCB

Thompson

Figure 2: Semi-log plot of K against accuracy score for K =

10, 100, 750.

we show a Semi-log plot of the number of tasks K against
the accuracy score with the corresponding confidence in-
tervals. All the Bayesian policies see an smaller optimality
gap when K gets larger. Index Policy performing consis-
tently the best among all the policies. It is proven in Chen
et al. (2011) that OKG policy is consistent: it achieve 100%
accuracy almost surely when number of workers goes to
infinity. We demonstrate numerically that the Index Policy
performs better than the OKG policy. It is thus reasonable
to anticipate that the Index Policy is not only consistent, but
is asymptotically optimal when both the number of work-
ers and the number of tasks goes to infinity, while keeping
the ratio of the number of workers and the number of tasks
constant.

8 Conclusion

We formulated the effort-allocation problem in crowd-
sourcing in a continuous time setting with budget constraint
and time constraint. We also provide a computationally
feasible upper bound on value of the Bayes-optimal pol-
icy using Lagrangian relaxation. Using the Lagrange mul-
tiplier used in proving the upper bound, we also derived an
index-based policy and showed in numerical experiments
that it performs close to optimal.

Manuscript under review by AISTATS 2016 9

9 Acknowledgment

The authors were partially supported by NSF CAREER
CMMI-1254298, NSF IIS-1247696, NSF CMMI-1536895,
AFOSR FA9550-12-1-0200, AFOSR FA9550-15-1-0038,
and the ACSF AVF (Atkinson Center for a Sustainable Fu-
ture Academic Venture Fund).

References
Adelman, D and Mersereau, A. Relaxations of Weakly

Coupled Stochastic Dynamic Programs. Operations Re-
search, 2008.

Auer, P, Cesa-Bianchi, N, and Fischer, P. Finite-time Anal-
ysis of the Multiarmed Bandit Problem. Machine Learn-
ing, 2002.

Bacharach, Y, Grapple, T, Minka, T, and Guiver, J. How
to grade a test without knowing the answers - a Bayesian
graphical model for adaptive crowdsourcing and aptitude
testing. ICML, 2013.

Chapelle, O and Li, L. An Empirical Evaluation of Thomp-
son Sampling. NIPS, 2002.

Chen, X, Lin, Q, and Zhou, D. Statistical Decision Mak-
ing for Optimal Budget Allocation in Crowd Labeling.
arXiv, 2011.

Chen, Xi, Lin, Qihang, and Zhou, D Y. Optimistic Knowl-
edge Gradient Policy for Optimal Budget Allocation in
Crowdsourcing. ICML, 2013.

Ghosh, A, Kale, S, and McAfee, P. Who moderates the
moderators? Crowdsourcing Abuse detection in user-
generated content. ACM, 2011.

Gittins, J C. Multi-Armed Bandit Allocation Indices. John
Wiley and Sons, New York, 1989.

Hawkins, J. A Lagrangian decomposition approach to
weakly coupled dynamic optimization problems and its
applications. Ph.D Thesis, Center of Operations Re-
search, MIT, 2002.

Ho, CJ, Jabbari, S, and Vaughan, J W. Adaptive task as-
signment for crowdsourced classification. ICML, 2013.

Karger, D, Oh, S, and Shah, D. Budget-Optimal Task Allo-
cation for Reliable Crowdsourcing Systems. Operations
Research, 2013a.

Karger, D R, Oh, S, and Shah, D. Iterative Learning for
Reliable Crowdsourcing System. NIPS, 2011.

Karger, D R, Oh, S, and Shah, D. Efficient crowdsourcing
for multi-class labeling. ACM, 2013b.

Lovejoy, W S. A survey of algorithmic methods for par-
tially observed Markov decision processes. Annals of
Operations Research, 28(1):47–65, 1991.

Monahan, G E. A survey of partially observable Markov
decision processes: Theory, models, and algorithms.
Management Science, 28(1):1–16, 1982.

Powell, W B. Approximate Dynamic Programming: Solv-
ing the curses of dimensionality. John Wiley and Sons,
New York, 2007.

Snow, R, OConnor, B, Jurafsky, D, and Ng, A. Cheap and
Fast But is it Good? Evaluating Non-Expert Annota-
tions for Natural Language Tasks. EMNLP, 2008.

Thanh, T L, Venanzi, M, Rogers, A, and Jennings, N R.
Efficient budget allocation with accuracy guarantees for
crowdsourcing classification tasks. ACM, 2013.

Whittle, P. Restless bandits: Activity Allocation in a
Changing World. Journal of Applied Probability, 25:
287–298, 1988.

Yan, Y, Rosales, R, Fung, G, and Dy, J. Active learning
from crown. ICML, 2011.

	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Dynamic Programming Formulation
	5 Upper Bound on the Bayes-Optimal Policy
	6 Index Policy
	7 Numerical Experiment
	7.1 Simulation using simulated data
	7.2 Simulation using real data

	8 Conclusion
	9 Acknowledgment

