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Abstract

We consider the problem of group testing with sum observations and noiseless answers, in
which we aim to locate multiple objects by querying the number of objects in each of a sequence
of chosen sets. We study a probabilistic setting with entropy loss, in which we assume a joint
Bayesian prior density on the locations of the objects and seek to choose the sets queried to
minimize the expected entropy of the Bayesian posterior distribution after a fixed number of
questions. We present a new non-adaptive policy, called the dyadic policy, show it is optimal
among non-adaptive policies, and is within a factor of two of optimal among adaptive policies.
This policy is quick to compute, its nonadaptive nature makes it easy to parallelize, and our
bounds show it performs well even when compared with adaptive policies. We also study an
adaptive greedy policy, which maximizes the one-step expected reduction in entropy, and show
that it performs at least as well as the dyadic policy, offering greater query efficiency but reduced
parallelism. Numerical experiments demonstrate that both procedures outperform a divide-and-
conquer benchmark policy from the literature, called sequential bifurcation, and show how these
procedures may be applied in a stylized computer vision problem.

1 Introduction

We consider the following set-guessing problem, which is similar to classical group testing [1], but
differs in the form of the observations. Let Ω = R be the real line and θ = (θ1, . . . , θk) ∈ Ωk be a
vector containing the unknown locations of k objects, where k ≥ 1 is known. One can sequentially
choose subsets A1, A2, . . . of Ω, query the number of objects in each set, and obtain a series of
noiseless answers X1, X2, . . . . Our goal is to devise a method for choosing the questions that allows
us to find θ as accurately as possible, given a finite budget of questions. We work in a Bayesian
setting, and use the entropy of the posterior distribution on θ to measure accuracy.

We consider both adaptive policies, i.e., policies that choose the next question An based on previ-
ous answers, and non-adaptive policies, i.e., policies that choose all questions in advance. Adaptive
policies promise to better localize the objects within the given query budget, by adapting later
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questions to provide more useful information, but non-adaptive policies offer easy parallelization
because all questions may be asked simultaneously.

In this paper, we present two policies: a new non-adaptive policy, called the dyadic policy,
which splits the search domain into successively finer partitions; and an adaptive policy, called the
greedy policy, which chooses questions to maximize the one-step expected reduction in entropy. We
make the following contributions:

We show that the dyadic policy achieves an information-theoretic lower bound on the expected
entropy reduction achievable by a non-adaptive policy, showing it is optimal among non-adaptive
policies. We also show that the dyadic policy’s performance is within a factor of two of a lower bound
on the entropy reduction under any policy, adaptive or non-adaptive. Moreover, this non-adaptive
policy is easy to compute and provides a posterior distribution that supports fast computation.
Specifically, after N questions and answers, the dyadic policy allows for explicitly computing the
expected number of objects within each element of a partition of Ωk into 2N bins which can be
used in a second stage of querying. We also further characterize the entropy of the posterior under
this policy providing an explicit expression for its expected value and its asymptotic variance, and
by showing that it is asymptotically Normally distributed.

We also consider the greedy policy, and show its performance is at least as good as that of the
dyadic policy, and in some cases is strictly better. Thus, this policy offers improved query efficiency,
though it does not support parallelization and requires substantially more computation than the
dyadic policy, making it the more appropriate choice for applications that do not allow asking
questions in parallel, and for which questions are substantially more expensive than computation.

We also compare these policies against benchmarks and show that they offer substantial per-
formance benefits over the previous state-of-the-art.

1.1 Literature Review

The previous literature on similar problems can be classified into two groups: those that consider
a single object (k = 1); and those that consider multiple objects (k ≥ 1).

Among single-object versions of this problem, the earliest is the Rényi-Ulam game [2, 3, 4]. In
this game, one person (the responder) thinks of a number between one and one million and another
person (the questioner) chooses a sequence of subsets to query in order to find this number. The
responder can answer either YES or NO and is allowed to lie a given number of times.

Variations of the Renyi-Ulam game have been considered in [5]. Among these variations, the
following continuous probabilistic version, first studied in [6], is similar to the problem we consider:
The responser thinks of a number θ ∈ [0, 1] and the questioner aims to find a set A ⊂ [0, 1] with
measure less than ε such that θ ∈ A with probability at least q. In addition, the responser lies
with probability no more than p. Whether the questioner can win this game based on the error
probability p is analyzed and searching algorithms using O(log 1

ε ) queries are provided.
Among previous work on the single-object problem, perhaps the closest to the current work

is [7], which considered a Bayesian setting and used the entropy of the posterior distribution to
measure of accuracy, as we do here. It considered two policies, a greedy policy called probabilistic
bisection, which was originally proposed in [8] and further studied in [9, 10], and the dyadic policy.
[11] generalized the probabilistic bisection policy to multiple questioners. Here, we generalize both
policies to multiple objects.

Our work contrasts with this previous work on the single-object problem by considering multiple
objects.
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The previous literature includes work on three multiple-object problems: the Group Testing
problem [1, 12, 13, 14, 15, 16]; the subset-guessing game associated with the Random Chemistry
algorithm [17, 18]; and the Guessing Secret game [19]. We denote the collection of objects by S.
In the Group Testing problem, questions are of the form: Is A ∩ S 6= ∅? In the subset-guessing
game associated with the Random Chemistry algorithm, questions are of the form Is S ⊂ A?. In
the Guessing Secret game, when queried with a set A, the responder chooses an element from S
according to any rule that he likes, and tells the questioner whether this chosen element is in A.
The chosen element itself is not revealed, and may change after each question. Thus, the answer is
1 when S ⊂ A, 0 when A ∩ S = ∅, and can be either 0 or 1 otherwise.

Our work contrasts with this previous work by considering a problem where the answer provided
by the responser is not binary but instead counts the number of objects in the queried set.

Our use of the (differential) entropy as a measure of quality in localizing objects follows a similar
use of entropy in other sequential interrogation problems, including optimization of continuous
functions [20], online learning [21], and adaptive compressed sensing [22]. In this literature and
here, the differential entropy is of direct interest as a measure of concentration of the posterior
probability. Indeed, it is the logarithm of the volume of the smallest set containing “most of the
probability”, see [23] p.246. In our setting, when the prior distribution over each object’s location
is of Uniform distribution, the posterior distribution is also Uniform and the differential entropy
is exactly the logarithm of the volume of the support set of the posterior density. When the
querying process discussed here is followed by a second stage involving a different querying process
with different kinds of question and answers (as it is in each of the examples discussed below)
the differential entropy may be considered as a surrogate for the time complexity required in this
second stage.

1.2 Applications

The problem we consider, or slight variants of it, appear in three applications discussed below:
heavy hitter detection in network traffic stream, screening for important input factors in complex
simulators, and fast object localization in Computer Vision. They also appear in searching for
auto-catalytic sets of molecules [17], and searching for collections of multiple contingencies leading
to cascading power failures in models of electrical networks [24].

In each of the three applications discussed below, objects’ locations are discrete rather than
continuous. The policies we present, which result from an analysis considering differential entropy
and a continuous prior, may still be used profitably even when objects’ locations are known to lie
on a finite subset Ω′ of Ω, as long as the granularity of the questions asked does not become finer
than Ω′.

In heavy hitter detection [25], we operate a router within a computer network, and wish to
detect a (presumably small) number of source IP addresses that are generating traffic through
our network exceeding a given limit on packet rate. These source IP addresses are called “heavy
hitters”. Although we could, in theory, keep an ever-expanding list of all source IP addresses
with associated packet counts, this would require a prohibitive amount of memory. Instead, one
can choose a set of IP addresses A, and count how many packets fall into that set over a short
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time period1. By comparing this number to the limit on packet rate, one can obtain information
about the number of heavy hitters (which are our objects θi) with source addresses within A. By
sequentially, or simultaneously, querying several sets A, one can obtain a low-entropy posterior
distribution on the locations of all heavy hitters. One can then follow this first stage of queries
on sets A by a second confirmatory stage of queries on individual IP addresses that the first stage
revealed were likely to be being heavy hitters.

In screening for important factors in complex simulators [26, 27], we wish to determine which
of a large number of input parameters have a significant effect on the output of a computer model.
A factor model models each input to the simulator as a factor taking one of two values, “on” or
“off”, and models the output of the simulator as approximately linear in the factors, with unknown
coefficients that multiply each of the “on” factors to produce the output. The “important” factors
are those with nonzero coefficients, and these are the objects θi we seek to identify. To identify
them, we may choose a set of factors A to turn on, and observe the output of the simulator, which
gives us information about the number of important factors in the queried set. By sequentially,
or simultaneously, querying several sets A, we may obtain a low-entropy posterior distribution on
the identity of the important factors. We can then individually query those factors believed to be
important in a second confirmatory stage.

In computer vision applications, we may wish to localize object instances in images and video
streams. Examples include detecting faces in images [28], finding quasars in astronomical data [29],
and counting synapses in electron microscopy volumes [30]. To support this, high-performing but
computationally expensive classifiers exist that can localize object instances accurately. While one
way to localize each instance would be to run such a classifier at each and every pixel to assess
whether an instance was centered at that pixel, this would be computationally intractable for large
images or video sequences. Instead, one can divide the image into various sub-regions A, and use
a computation to count how many instances fall in that region. Critically, counting the number
of instances in a region is substantially faster than running the classifier at every pixel in that
region, see [31, 32, 33]. Using a low-entropy posterior distribution obtained from these queries,
one can compute the expected number of objects, among k, at each pixel. We can then run our
expensive classifier in a second confirmatory stage at those pixels where an object instance has been
identified as being likely to reside. We illustrate our policies on a substantially simplified version
of this problem in Section 7.

Now, in Section 2, we state the problem more formally, and summarize our main results.

2 Problem Formulation and Summary of Main Results

Let θ = (θ1, . . . , θk) be a random vector taking values in Rk. θi represents the location of the ith
object of interest, i = 1, . . . , k. We assume that θ1, . . . , θk are i.i.d. with density f0, and joint
density p0(θ) =

∏k
i=1 f0(θi). We assume f0 is absolutely continuous with respect to the Lebesgue

measure and has finite differential entropy, which is defined in (2). We refer to p0 as the Bayesian
prior probability distribution on θ. We will ask a series of N > 0 questions to locate θ1, . . . , θk,
where each question takes the form of a subset of R, and the answer to this question is the number

1Our framework allows general A, while in practice, the set A should be of a form that allows easily checking
whether a packet resides within it, for example, by having the set A consist of all source IP addresses simultaneously
satisfying a collection of conditions on individual bits within the address. The dyadic policy that we construct has
this form when the prior is uniform, and the number of allowed queries is below a threshold.
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of objects in this subset. More precisely, for each n ∈ {1, 2, . . . , N}, the nth question is An ⊂ R
and its answer is

Xn = 1An(θ1) + · · ·+ 1An(θk), (1)

where 1A is the indicator function of the set A. Unless otherwise stated, our choice of the set
An may depend upon the answers to all previous questions, and upon some initial randomization
through a uniform random variable Z on [0, 1] chosen independently of θ. Thus, the set An is
random, through its dependence on Z, and the answers to previous questions.

We call a rule for choosing the questions An a policy. Formally, we define a policy π to be a
sequence π = (π1, . . . , πN ), where πn is a Borel-measurable subset of [0, 1] × {0, 1, . . . , k}n−1 × R.
We denote the collection of all such policies by Π. With a policy π specified, the choice of An is
then An = {t ∈ R : (Z,X1:n−1, t) ∈ πn}, so that specifying πn implicitly specifies a rule for choosing
An based on the random seed Z and the history X1:n−1. Here, we have used the notation Xa:b

for any natural numbers a and b to indicate the sequence (Xa, . . . , Xb) if a ≤ b, and the empty
sequence if a > b. We define θa:b and Aa:b similarly. The distribution of An thus implicitly depends
on π. When we wish to highlight this dependence, we will use the notation P π and Eπ to indicate
probability and expectation respectively. However, when the policy being studied is clear, we will
simply use P and E .

This definition of Π allows the choice of question to depend upon previous answers, and when
we wish to emphasize this fact we will refer to Π as the set of adaptive policies. We also define the
set of non-adaptive policies ΠN ⊂ Π to be those under which each An depends only on the random
seed Z, i.e., for a fixed Z = z, the questions A1:N are deterministic. From a formal point of view,
note that the set of adaptive policies includes the set of non-adaptive policies as a special case.
Figure 1 illustrates, as a Bayesian network, the dependence structure of the random variables in
our problem under an adaptive policy, and under a non-adaptive policy.
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Figure 1: Bayesian network representation of our model under an adaptive policy (left), and a non-adaptive policy
(right).

We refer to the posterior probability distribution on θ after n questions as pn, so pn is the
conditional distribution of θ given the past history Bn = {Z,A1:n, X1:n}. The dependence on Z
arises because An may depend on Z, in addition to X1:n−1. Equivalently, under any fixed policy
π, pn is the conditional distribution of θ given Bn. This posterior pn can be computed using Bayes

rule: pn(u) is proportional to p0(u) over the set
{
u ∈ Rk : Xm =

∑k
i=1 1Am(ui), 1 ≤ m ≤ n

}
, and

0 outside.
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After we exhaust our budget of N questions, we will measure the quality of what we have
learned via the differential entropy H(pN ) of the final posterior distribution pN on θ,

H(pN ) = −E[log pN ] = −
∫
Rk

pN (u1:k) log(pN (u1:k)) du1:k. (2)

Throughout this paper, we use “ log ” to denote the logarithm to base 2. We let H0 = H(p0),
and we assume −∞ < H(p0) < +∞. The posterior distribution pN , as well as its entropy H(pN ),
are random for N > 0, as they depend on X1:N and Z. Thus, we measure the quality of a policy
π ∈ Π when given N questions using the rate of reduction in expected entropy

R(π,N) =
H0 − Eπ[H(pN )]

N
. (3)

This rate is the average number of bits learned per question.
Our goal in this paper is to characterize the solution to the optimization problem

sup
π
R(π,N). (4)

with π ∈ Π or π ∈ ΠN . Any policy that attains this supremum is called optimal. According to this
definition, an optimal policy may not exist.

While (4) can be formulated as a partially observable Markov decision process [34], and can
be solved, in principle, via dynamic programming, the state space of this dynamic program is the
space of posterior distributions over θ, and the extreme size of this space prevents solving this
dynamic program through brute-force computation. Thus, we must characterize optimal policies
using other means.

We define two policies, the dyadic policy, which is non-adaptive, and the greedy policy, which is
adaptive. (More precisely, the greedy is a class of policies, as its definitions allow certain decisions
to be made arbitrarily.) We will see below that the dyadic policy attains the supremum in (4) for
π ∈ ΠN , and thus is optimal among non-adaptive policies. We will also see that its performance
comes within a factor of two of the supremum for π ∈ Π, showing that it is a two-approximation
among adaptive policies. We will also see below that the greedy policy performs at least as well as
the dyadic policy, and so is also a two-approximation among adaptive policies.

To define the dyadic policy, let us recall that the quantile function of θ1 is

Q(p) = inf {u ∈ R : p ≤ F0(u)} , (5)

where F0 is the cumulative distribution function of θ1, corresponding to its density f0. The dyadic
policy consists in choosing at step n ≥ 1 the set

An =

2n−1⋃
j=1

(
Q

(
2j − 1

2n

)
, Q

(
2j

2n

)]⋂ supp(f0), (6)

where supp(f0) is the support of f0, i.e., the set of values u ∈ R for which f0(u) > 0. For example,
when f0 is uniform over (0, 1], the dyadic policy is the one in which the first question is A1 =

(
1
2 , 1
]
,

the second question is A2 =
(

1
4 ,

1
2

]
∪
(

3
4 , 1
]
, and each subsequent question is obtained by subdividing

(0, 1] into 2n equally sized subsets, and including every second subset. A further illustration of the
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dyadic question sets An is provided in Figure 4 in Section 5. This definition of the dyadic policy
generalizes a definition provided in [7] for single objects.

We define a greedy policy to be any policy that chooses each of its questions to minimize the
expected entropy of the posterior distribution one step forward in time,

An ∈ arg min
A

E[H(pn)|pn−1, An = A], for all n = 1, 2, . . . , N , (7)

where the argmin is taken over all Borel-measurable subsets of R. We show in Section 6 that this
argmin exists.

We are now ready to present our main results:

log(k + 1) ≥ sup
π∈Π

R(π,N) ≥ R(πG, N) ≥ R(πD, N) = Hk = sup
π∈ΠN

R(π,N) ≥ 1

2
log(k + 1), (8)

where πG is a greedy policy, πD is a dyadic policy, and

Hk = H

(
Bin

(
k,

1

2

))
, (9)

is the entropy of a Binomial distribution Bin(k, 1
2).

The first inequality in (8) is an information theoretic inequality (easily proved in Section 3). The
second inequality is trivial since an optimal adaptive policy is at least as good as any other policy.
The third inequality comes from a detailed computation of the posterior distribution pN of θ after
observing N answers for any possible sequence of N questions (see Section 6.2). Additionally, we
show that this inequality cannot be reversed, by presenting a special case in which there is a greedy
policy whose performance is strictly better than that of the dyadic policy (see Section 6.3). The
first equality comes from the characterization of the posterior distribution pN in the special case of
the dyadic policy (see Section 5.2). The last equality is an information theoretic inequality which
exploits the conditional independence structure of non-adaptive policies. It is proven in Section 3.
The last inequality, proven in Section 5.2, shows that the rate of an optimal non adaptive policy is
no less than half the rate of an optimal adaptive policy.

The power of these results is illustrated by Figure 2, which shows, as a function of the number of
objects k, the number of questions required to reduce the expected entropy of the posterior on their
locations by 20 bits per object. The figure shows the number of questions needed under the dyadic
policy (solid line); under two benchmark policies described below, Benchmark 1 and Benchmark
2 (dotted, and dash-dotted lines); and a lower bound on the number needed under the optimal
adaptive policy (dashed line, and left-most expression in (8)). By (8), we know that the number of
extra questions required by using either the dyadic or the greedy, instead of the adaptive optimal
policy, is bounded above by the distance between the solid and dashed lines.

Benchmark 1 identifies each object individually, using an optimal single-object strategy. It first
asks questions to localize the first object θ1, reducing the entropy of our posterior distribution on
that object’s location by 20 bits. This requires 20 questions, and can be achieved, for example, by
a bisection policy, [8]. It then uses the same strategy to localize each subsequent second object,
requiring 20 questions per object. Implementing such a policy would require the ability to ask
questions about whether or not a single specified object (e.g., object θ1) resides in a queried set,
rather than the number of objects in that set. While this ability is not included in our formal
model, Benchmark 1 nevertheless provides a useful comparison. The total number of questions
required under this policy to achieve 20 bits of entropy reduction per object is 20k.
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Figure 2: Number of questions needed to reduce the entropy by 20 bits per object under two benchmark policies
and the dyadic policy, and a lower bound on the number under the optimal adaptive policy. The two graphs show
the total number of questions (left) and number of questions per object (right). The dyadic policy significantly
outperforms both benchmarks and its performance is relatively close to the lower bound on an optimal adaptive
policy’s performance. The performance of the greedy policy is between that of the dyadic and the lower bound.

Benchmark 2 is adapted from the sequential bifurcation policy of [27]. While [27] considered
an application setting somewhat different from the problem that we consider here (screening for
discrete event simulation), we were able to modify their policy to allow it to be used in our setting. A
detailed description of the modified policy is provided in Appendix B. It makes full use of the ability
to ask questions about multiple objects simultaneously, and improves slightly over Benchmark 1.
We view this policy as the best previously proposed policy from the literature for solving the
problem that we consider.

The figure shows that a substantial saving over both benchmarks is possible through the dyadic
or greedy policy. For example, for k = 24 = 16 objects, Benchmark 1 and Benchmark 2 require
320 and 304 questions respectively. In contrast, the dyadic policy requires 106 questions, which is
nearly 3 times smaller than required by the benchmarks. Furthermore, (8) shows that the greedy
policy performs at least as well as the dyadic policy. Thus, localizing objects’ locations jointly can
be much more efficient than localizing them one-at-a-time, and the dyadic and greedy policies are
implementable policies that can achieve much of the potential efficiency gains.

The figure also shows, again at k = 24 = 16 objects, that the optimal policy requires at least
80 questions, while the dyadic and greedy require no more than 106 questions, and so are within a
factor of 1.325 of optimal. This is remarkable, when we compare how little is lost when going from
the hard-to-compute optimal policy to the easily computed dyadic policy, with how much is gained
by going to the dyadic from one of the two benchmark policies considered. Our results also show
that this multiplicative factor is never worse than 2.
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The dyadic policy can be computed extremely quickly, and can even be pre-computed, as the
questions asked do not depend on the answers to previous questions. This makes it convenient
in settings where multiple questions can be asked simultaneously, e.g., in a parallel or distributed
computing environment. The greedy policy requires more computational effort than the dyadic
policy, but is still substantially easier to compute than the optimal policy, and provides performance
at least as good as that of the dyadic policy, as shown by (8), and sometimes strictly better, as will
be shown in Section 6.3.

We see in the figure that the dyadic policy’s rate and the rate of the optimal policy come
together at k = 1. This can also be seen directly from our theoretical results. When k = 1, the
left-hand and right-hand sides of (8) are equal, since Bin

(
k, 1

2

)
becomes a Bernoulli(1

2) random
variable, whose entropy is log(2) = 1. This shows, when k = 1, that the rate of expected entropy
reduction under the dyadic is the same as the upper bound on this rate under the optimal policy,
which in turn shows that both dyadic and greedy policies are optimal, and the upper bound is tight.
When k = 1, the well-known bisection policy is a greedy policy, and the dyadic is also greedy, i.e.,
satisfies (7).

We begin our analysis in Section 3, by justifying the left-most inequality in (8). We then provide
an explicit expression for the posterior distribution in Section 4, which is used in later analysis. We
analyze the dyadic policy in Section 5, and the greedy policy in Section 6. We illustrate the use of
our policies on a stylized problem inspired by computer vision applications in Section 7. Finally,
we offer concluding remarks in Section 8.

3 Upper Bounds on the Rate of Reduction in Expected Entropy

In this section, below in Theorem 1, we prove the first inequality in (8), which is an easy upper
bound on the reduction in expected entropy for a fixed number of questions and answers under an
adaptive policy. This bound is obtained from the fact that the answer to each question is a number
in {0, 1, . . . , k}, and so cannot provide more than log(k+ 1) bits. We also prove in Theorem 1 that
the upper bound cannot be achieved for k > 1.

Then, we provide a complementary upper bound for non-adaptive policies in Theorem 2, which
we later show in Section 5.2 is matched by the dyadic policy, showing that it is optimal among
non-adaptive policies.

Theorem 1.
sup
π∈Π

R(π,N) ≤ log(k + 1). (10)

Moreover, when k > 1, this inequality is strict.

Proof. According to the definition of rate of reduction in expected entropy in (3), in order to prove
(10), we need to prove that under any valid policy,

E[H(pN )] ≥ H0 − log(k + 1)N. (11)

Recall that H(pN ) is the entropy of the posterior distribution of θ, which is random through its
dependence on the past history BN = {X1:N , A1:N , Z}. Thus, E[H(pN )] = H(θ|BN ). Furthermore,
using information theoretic arguments, we have

H(θ|BN ) = H(θ)− I(θ;BN ) = H0 − (H(BN )−H(BN |θ)) (12)

9



Moreover,

H(BN ) = H(X1:N , A1:N , Z)

= H(A1:N |X1:N , Z) +H(X1:N |Z) +H(Z)

= H(X1:N |Z) +H(Z)

≤
N∑
n=1

H(Xn) +H(Z)

≤ log(k + 1)N +H(Z),

(13)

where H(A1:N |X1:N , Z) = 0 because the information contained in the random seed Z and the
answers X1:N completely determines the questions A1:N . Recall that for all n = 1, 2, . . . , N , Xn

is a discrete random variable with k + 1 possible outcomes, namely 0, 1, . . . , k. The maximum
possible value for the entropy H(Xn) is log(k + 1), obtained when each outcome of Xn has the
same probability 1

k+1 , i.e. H(Xn) ≤ log(k + 1).
On the other hand,

H(BN |θ) = H(X1:N , A1:N , Z|θ)
= H(A1:N |X1:N , Z, θ) +H(X1:N |Z, θ) +H(Z|θ)
= H(Z),

(14)

where H(A1:N |X1:N , Z, θ) = 0 for the same reason as above, and H(X1:N |Z, θ) = 0 because the
information contained in θ completely determines X1:N . Also, H(Z|θ) = H(Z) because the random
seed Z is assumed to be independent of the objects θ.

Plugging (13) and (14) back into (12), we obtain the desired result (11).
We now prove that the inequality (10) is strict when k > 1, i.e. when there is more than

one object. Consider any fixed Z = z, which specifies the questions set A1. Recall from (1) that
X1 = 1A1(θ1) + · · · + 1A1(θk) and that θ1, . . . , θk are independent. As a consequence, X1 | Z =
z ∼ Bin(k, p), where p =

∫
A1
f0(u) du. Therefore, H(X1|Z = z) = H (Bin(k, p)) < log(k + 1) when

k > 1, implying H(X1|Z) < log(k+1). Thus, H(BN ) = H(X1:N |Z)+H(Z) < log(k+1)N+H(Z),
so that there is no policy that can achieve the upper bound.

Now, we provide an upper bound on the rate of reduction in expected entropy for all non-
adaptive policies.

Theorem 2. Under any non-adaptive policy π ∈ ΠN , we have

R(π,N) ≤ H
(

Bin

(
k,

1

2

))
. (15)

Proof. To prove the claim (15), it suffices to prove that under any non-adaptive policy,

I(θ;BN )) ≤ H
(

Bin

(
k,

1

2

))
N. (16)

First of all, the relation between mutual information and entropy gives

I(θ;BN ) = I(θ; (A1:N , X1:N , Z)) = H(A1:N , X1:N , Z)−H(A1:N , X1:N , Z|θ). (17)
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For the first term, we have

H(A1:N , X1:N , Z) ≤
N∑
n=1

H(An, Xn|Z) +H(Z) =

N∑
n=1

(H(Xn|An, Z) +H(An|Z)) +H(Z). (18)

For the second term, we have

H(A1:N , X1:N , Z|θ) = H(X1:N |A1:N , Z, θ) +H(A1:N |Z, θ) +H(Z|θ). (19)

Furthermore, H(X1:N |A1:N , Z, θ) = 0 since the information contained in θ and A1:N completely
determines X1:N . Also, H(A1:N |Z, θ) =

∑N
n=1H(An|Z, θ) =

∑N
n=1H(An|Z), since we can see

from Figure 1 that A1, . . . , AN are conditional independent given Z, θ, and each An is independent
of θ conditional on Z as Z is the only parent of An in the directed acyclic graph. In addition,
H(Z|θ) = H(Z) since the random seed Z is assumed to be independent of the object θ. Hence, we
have

H(A1:N , X1:N , Z|θ) =

N∑
n=1

H(An|Z) +H(Z). (20)

Combining (17), (18) and (20) yields

I(θ; (A1:N , X1:N , Z)) ≤
N∑
j=1

(H(Xn|An, Z) +H(An|Z)) +H(Z)−
N∑
n=1

H(An|Z)−H(Z)

=
N∑
n=1

H(Xn|An, Z).

(21)

Recall that by definition, Xn =
∑k

i=1 1An(θi), which is a sum of i.i.d. Bernoulli random variables.
Hence, for each fixed An = an and Z = z, we have (Xn|An = an, Z = z) ∼ Bin(k, P (θ1 ∈ an)).
Therefore,

H(Xn|An, Z) ≤ sup
an,z

H(Xn|An = an, Z = z) ≤ sup
p∈[0,1]

H(Bin(k, p)) = H

(
Bin

(
k,

1

2

))
. (22)

The claim of the theorem follows.

4 Explicit Characterization of the Posterior Distribution

In this section, we first introduce in Section 4.1 some notation to characterize the joint location of
objects and provide an example to illustrate these notations. We then derive an explicit formula
for the posterior distribution on the locations of the objects. In Section 4.2, we compute the
conditional distribution of the next answer Xn given previous answers X1:n−1, which we will use
later to analyze the rate of a policy.

4.1 The Posterior Distribution of the Objects

Consider a fixed n, where 1 ≤ n ≤ N . For each binary sequence of length n, s = {s1, . . . , sn}, let

Cs =

 ⋂
1≤j≤n;sj=1

Aj

⋂ ⋂
1≤j≤n;sj=0

Acj

⋂ supp(f0). (23)
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The collection {Cs : Cs 6= ∅, s ∈ {0, 1}n} is a partition of the support of f0. A history of n
questions provides information on which sets Cs contain which objects among θ1:k.

We will think of a sequence of binary sequences s(1), . . . , s(k) as a sequence of codewords indi-
cating the sets in which each of the objects θ1:k reside, i.e, indicating that θ1 is in Cs(1) , θ2 is in
Cs(2) , etc. We may consider each binary sequence s(1), . . . , s(k) to be a column vector, and place
them into an n× k binary matrix, S. This binary matrix then codes the location of all k objects,
and is a codeword for their joint location.

Moreover, to characterize the location of the random vector θ = (θ1:k) in terms of its codeword
S, define CS ⊂ Rk to be the Cartesian product

CS = Cs(1) × · · · × Cs(k) . (24)

To be consistent with an answer Xj , we must have exactly Xj objects located in the question
set Aj for each 1 ≤ j ≤ n. This can be described in terms of a constraint on the matrix S as

s
(1)
j + · · ·+ s

(k)
j = Xj , i.e., that the sum of the jth row in the matrix S is Xj . Thus, after observing

the answers to the questions X1:n = x1:n, the set of all possible joint codewords describing θ1:k is

En = {S|s(1), . . . , s(k) ∈ {0, 1}n, Cs(1) , . . . , Cs(k) 6= ∅, s
(1)
j + · · ·+ s

(k)
j = xj , for all 1 ≤ j ≤ n}. (25)

To illustrate the previous construction, and also to provide the foundation for a later analysis
in Section 6.3 showing the greedy policy is strictly better than the dyadic policy in some settings,
we provide two examples of the posterior distribution, arising from two different responses to the
same sequence of questions.

Suppose θ1, θ2 are two objects located in (0,1] with a uniform prior distribution f0. Let A1 and
A2 be the first two questions of the dyadic policy, so A1 =

(
1
2 , 1
]

and A2 =
(

1
4 ,

1
2

]
∪
(

3
4 , 1
]
. Then

consider two possibilities for the answers to these questions:

Example 1: Suppose X1 = 0 and X2 = 2. According to (25), there is only one matrix S in the
collection E2, which has s(1) = s(2) = (0, 1)T . Thus E2 = {S1} where

S1 =

(
0 0
1 1

)
. (26)

We can observe that p2(u1:2) = 16 when u1:2 is in
(

1
4 ,

1
2

]
×
(

1
4 ,

1
2

]
, and 0 otherwise.

Example 2: Suppose X1 = 1 and X2 = 1. According to (25), there are four matrices in the
collection E2 = {S1,S2,S3,S4},

S1 =

(
0 1
0 1

)
,S2 =

(
0 1
1 0

)
,S3 =

(
1 0
0 1

)
,S4 =

(
1 0
1 0

)
. (27)

We can observe that the posterior distribution has density p2(u1:2) = 4 when u1:2 is in
(
0, 1

4

]
×
(

3
4 , 1
]

or
(

1
4 ,

1
2

]
×
(

1
2 ,

3
4

]
or
(

1
2 ,

3
4

]
×
(

1
4 ,

1
2

]
or
(

3
4 , 1
]
×
(
0, 1

4

]
, and is 0 otherwise.

All possible joint locations of θ1, θ2 in the two examples above are shown in Figure 3.

12



0 1/4 1/2 1

S1

S2

S3

S4

3/4

0 1/4 1/2 13/4

0 1/4 1/2 13/4

0 1/4 1/2 13/4
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S1

3/4

Example 1 Example 2

✓1, ✓2 ✓1 ✓2

✓1

✓1

✓1

✓2

✓2

✓2

Figure 3: Illustration of the locations of the two objects θ1, θ2 specified by each matrix given in (26) and (27). The
dark subsets mark the location of the objects θ1, θ2.

Given this notation, we observe the following lemma:

Lemma 1. Let a policy π and the random seed Z = z be fixed. Then, for each x1:n, the event
{X1:n = x1:n} can be rewritten

{X1:n = x1:n} =

{
θ ∈

⋃
S∈En

CS

}
, (28)

where we recall that En depends on x1:n. Moreover for any S, T ∈ En with S 6= T , the two sets CS
and CT are disjoint.

Proof. Clearly, according to the definition of En in (25), when θ ∈ ⋃S∈En
CS , the answers that

we observe must satisfy X1:n = x1:n. On the other hand, suppose θ1:k 6∈
⋃
S∈En

CS . Then θ1:k

belongs to some nonempty set CS where S 6∈ En. Hence, there exists j, 1 ≤ j ≤ n, such that

s
(1)
j + · · ·+s

(k)
j 6= xj , which implies that the answer to the question Aj is Xj = s

(1)
j + · · ·+s

(k)
j 6= xj .

This proves (28).
Now, for any S 6= T , there exists i with 1 ≤ i ≤ k such that s(i) 6= t(i). This implies that Cs(i)

and Ct(i) are disjoint and the last assertion follows.

At this point, the explicit characterization of the posterior distribution is immediate and we
have the following lemma.

Lemma 2.

pn(u1:k) =
p0(u1:k)

p0

( ⋃
S∈En

CS

) , for u1:k ∈
⋃
S∈En

CS , (29)
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and pn(u1:k) = 0 for u1:k /∈
⋃
S∈En

CS . Here, for any measurable set A, p0(A) denotes the integral∫
A p0(u1:k) du1:k. Moreover,

p0

( ⋃
S∈En

CS

)
=
∑
S∈En

p0(CS) =
∑
S∈En

f0(Cs(1)) . . . f0(Cs(k)), (30)

where f0(Cs(i)) denotes the integral
∫
C

s(i)
f0(u) du.

4.2 The Posterior Predictive Distribution of Xn+1

We now provide an explicit form for the posterior predictive distribution of Xn+1, i.e., its con-
ditional distribution given the history X1:n and the external source of randomness in the policy
Z. This is useful because Lemma 4 in the appendix shows that the expected entropy E[H(pN )]
can be computed using the conditional entropy of Xn+1 given Bn = (Z,A1:n, X1:n). We use this in
Sections 5.2 and 6.2 to compute the expected entropy for the dyadic and greedy policies respectively.

For n = 0, we have demonstrated in the proof of Theorem 1 that X1 follows the binomial
distribution Bin(k, f0(A1)) given Z.

Now, consider any n ∈ {1, 2, . . . , N − 1}, and any fixed history bn = (z, a1:n, x1:n). Using the
equality (28) presented in Lemma 1 we have,

P (Xn+1 = x|Bn = bn)

=
∑
S∈En

P (Xn+1 = x, θ ∈ CS |Bn = bn)

=
∑
S∈En

P (Xn+1 = x|θ ∈ CS , Bn = bn)P (θ ∈ CS |Bn = bn).

(31)

Now, since for any S ∈ En, {θ ∈ CS , Z = z} ⊂ {Bn = bn} according to Lemma 1, we can simplify:

P (Xn+1 = x|θ ∈ CS , Bn = bn) = P (Xn+1 = x|θ ∈ CS , Z = z). (32)

Also, using Lemma 2, we obtain

P (θ ∈ CS |Bn = bn) =
f0(Cs(1)) . . . f0(Cs(k))∑

S∈En

f0(Cs(1)) . . . f0(Cs(k))
. (33)

Finally, according to (1), Xn+1 is the sum of k Bernoulli random variables 1An+1(θ1), . . . ,1An+1(θk).
Given the event {θ ∈ CS , Z = z}, these k Bernouili r.v’s are conditionally independent with

respective parameters q1 =
f0(An+1∩Cs(1)

)

f0(C
s(1)

) , . . . , qk =
f0(An+1∩Cs(k)

)

f0(C
s(k)

) . This conditional independence

can be verified as follows. Consider any fixed binary vector w ∈ {0, 1}k. For each i = 1, . . . , k, let
Di be equal to An+1 if wi = 1 and its complement Acn+1 if wi = 0. Then,

P (1An+1(θi) = wi, i = 1, . . . , k|θ ∈ CS , Z = z) = P (θi ∈ Di, i = 1, . . . , k|θ ∈ CS , Z = z)

=
p0(D1 ∩ Cs(1) × · · · ×Dk ∩ Cs(k))

p0(CS)
=

∏k
i=1 f0(Di ∩ Cs(i))∏k
i=1 f0(Cs(i)))

=
k∏
i=1

f0(Di ∩ Cs(i))
f0(Cs(i)))

=
k∏
i=1

P (θi ∈ Di|θ ∈ CS , Z = z) =
k∏
i=1

P (1An+1(θi) = wi|θ ∈ CS , Z = z).

(34)
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Using the fact that Xn+1 is the sum of k conditionally independent Bernoulli random variables
given θ ∈ CS and Z = z, we may provide an explicit probability mass function. When q1 =
· · · = qk, Xn+1 is conditionally Bin(k, q1) given θ ∈ CS and Z = z. In general, let W1, . . . ,Wn

be n independent discrete random variables with Wi ∼ Bernoulli(qi), where q1, . . . , qn are any real
numbers in [0,1]. The distribution of Y = W1 + . . .+Wn is called Poisson Binomial distribution,
which was first studied by S. D. Poisson in [35]. We denote the distribution of Y by PB(q1, . . . , qn)
and its probability mass function P (Y = y) = fPB(y; q1, . . . , qn) is given by

fPB(y; q1, . . . , qn) =
∑

w1:n∈{{0,1}n|w1+···+wn=y}

n∏
j=1

q
wj

j (1− qj)1−wj , (35)

and has mean and variance given by

E[Y ] = q1 + . . .+ qn,

V ar[Y ] = q1(1− q1) + . . .+ qn(1− qn).
(36)

Using this definition of the Poisson Binomial distribution, the conditional distribution of Xn+1

given θ ∈ CS and Z = z is PB(q1, . . . , qn).
Finally, putting together equations (31), (33), and the fact thatXn+1 is conditionally PB(q1, . . . , qn)

given θ ∈ CS and Z = z provides the following characterization of the conditional probability mass
function of Xn+1 given Bn = (Z,A1:n, X1:n) = bn.

Theorem 3. For n = 0, given {B0 = b0} = {Z = z}, X1 ∼ Bin(k, f0(A1)). For n = 1, 2, . . . , N −
1, given Bn = (Z,A1:n, X1:n) = bn, Xn+1 is a mixture of Poisson Binomial distributions with
probability mass function:

P (Xn+1 = x|Bn = bn)

=
∑
S∈En

f0(C
s(1)

)...f0(C
s(k)

)∑
T ∈En

f0(C
t(1)

)...f0(C
t(k)

)fPB

(
x, q1 =

f0(An+1∩Cs(1)
)

f0(C
s(1)

) , . . . , qk =
f0(An+1∩Cs(k)

)

f0(C
s(k)

)

)
. (37)

5 The Dyadic Policy for Localizing Multiple Objects

We now present the first policy of interest: the dyadic policy. This policy is easy to implement, and
is non-adaptive, allowing its use in parallel computing environments. The description of the dyadic
policy will be given in Section 5.1. In Section 5.2, we will derive the rate of this policy and show
that it is optimal among all non-adaptive policies, which is the last equality in our main results (8).
Finally, asymptotic normality of H(pN ) under the dyadic policy will be provided in Section 5.3.

5.1 Description of the dyadic policy

The definition of the dyadic policy is given in (6). In this section, we provide an iterative construc-
tion of this policy, introducing notation which will be useful later on.

First, we partition the support of f0 into two subsets, A1,0 and A1,1:

A1,0 =

(
Q (0) , Q

(
1

2

)]
∩ supp(f0), (38a)

A1,1 =

(
Q

(
1

2

)
, Q (1)

]
∩ supp(f0), (38b)
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where Q, as defined in (5), denotes the quantile function. With this partition, the question asked
at time 1 is

A1 = A1,1. (39)

Then we adopt a similar procedure recursively for each n = 1, . . . , N − 1 to partition An,j into
two subsets, An+1,2j and An+1,2j+1 and then construct the question from these partitions. For
j = 0, . . . , 2n − 1, define

An+1,2j =

(
Q

(
2j

2n+1

)
, Q

(
2j + 1

2n+1

)]
∩ supp(f0), (40a)

An+1,2j+1 =

(
Q

(
2j + 1

2n+1

)
, Q

(
2j + 2

2n+1

)]
∩ supp(f0), (40b)

Then the question asked at time n+ 1 is

An+1 =
2n−1⋃
j=0

An+1,2j+1. (41)

An illustration of these sets An is provided below in Figure 4.
Note that the dyadic policy is non-adaptive, as only the prior distribution is used to construct

the next set and not the answer to previous questions.

n=1

n=2

n=3

A1,0 A1,1

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 A3,7

prior
u0 1

f0(u)

Figure 4: Illustration of the dyadic policy. The prior density with support [0, 1] is displayed above the illustrations
of the sets An,k for n = 1, 2, 3. The question set An is the union of the dark subsets An,k for that value of n.

5.2 The rate of the dyadic policy

The rate of the dyadic policy is stated as follows:

Theorem 4. Under the dyadic policy πD,

R(πD, N) = H

(
Bin

(
k,

1

2

))
. (42)

Moreover, the dyadic policy is optimal among all non-adaptive policies.
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Proof. In this proof, we will first simplify the equation (37) in Theorem 3 to obtain the posterior
distribution of Xn+1 under the dyadic policy. Then we will calculate the entropy HπD(Xn+1|Bn)
and employ Lemma 4 in the appendix to compute the rate of the dyadic policy.

At time n, where 1 ≤ n ≤ N , the support of f0 is partitioned into pairwise disjoint subsets
{An,0, . . . , An,2n−1}. Recall the definition of Cs in (23). The sets Cs provide a bijection which maps
a binary sequence s ∈ {0, 1}n to a subset An,j(s) for some j(s) ∈ {0, 1, . . . , 2n − 1}. Hence, Cs(i) in
(37) can be rewritten as

Cs(i) = An,j(s(i)), for some index j(s(i)) ∈ {0, 1, . . . , 2n − 1}. (43)

According to the construction of dyadic questions in Section 5.1, An+1 =
2n−1⋃
j=0

An+1,2j+1. More-

over, An+1,2j(s(i))+1 ⊂ An,j(s(i)) and An+1,2j+1 ∩ An,j(s(i)) = ∅, for all j 6= j(s(i)). Thus, by (43) we
have

An+1 ∩ Cs(i) = An+1,2j(s(i))+1. (44)

Combining the above result with the fact that f0(An+1,2j(s(i))+1) = 1
2f0(An,j(s(i))) yields

f0(An+1 ∩ Cs(i))
f0(Cs(i))

=
1

2
, (45)

and this is true for all i = 1, 2, . . . , k.
Thus, for n ≥ 1, we can simplify (37) in Theorem 3 as

pn(Xn+1 = x|Bn = bn)

=
∑
S∈En

f0(C
s(1)

)...f0(C
s(k)

)∑
T ∈En

f0(C
t(1)

)...f0(C
t(k)

)fPB

(
x, q1 =

f0(An+1∩Cs(1)
)

f0(C
s(1)

) , . . . , qk =
f0(An+1∩Cs(k)

)

f0(C
s(k)

)

)
=

∑
S∈En

f0(C
s(1)

)...f0(C
s(k)

)∑
T ∈En+1

f0(C
t(1)

)...f0(C
t(k)

)fPB

(
x, q1 = 1

2 , . . . , qk = 1
2

)
= fPB

(
x, q1 = 1

2 , . . . , qk = 1
2

) ∑
S∈En

f0(C
s(1)

)...f0(C
s(k)

)∑
T ∈En

f0(C
t(1)

)...f0(C
t(k)

)

= fPB

(
x, q1 = 1

2 , . . . , qk = 1
2

)
.

(46)

The density above is just the density of the binomial distribution Bin
(
k, 1

2

)
. We proved that

given {Bn = bn}, Xn+1 is distributed as Bin
(
k, 1

2

)
and HπD(Xn+1|Bn = bn) = H

(
Bin

(
k, 1

2

))
for

all n = 1, . . . , N − 1. Thus, taking the expectation over all possible realizations of Bn, we obtain

HπD(Xn+1|Bn) = H

(
Bin

(
k,

1

2

))
. (47)

Since f0(A1) = 1
2 under the dyadic policy, according to Theorem 3, X1|Z = z is distributed as

Bin
(
k, 1

2

)
for any fixed z and HπD(X1|B0) = H

(
Bin

(
k, 1

2

))
as well.

Therefore, according to (81) in Lemma 4 in the appendix,

R(πD, N) =
H0 − EπD [H(pN )]

N
=

∑N−1
n=0 H

πD(Xn+1|Bn)

N
= H

(
Bin

(
k,

1

2

))
. (48)

The last claim follows from Theorem 2 immediately.
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Note that this is the last equality in our main result (8).
The theorem above implies the following approximation guarantee for the entropy reduction

under the dyadic policy, relative to optimal.

Corollary 1.
R(πD, N)

supπ∈ΠR(π,N)
≥ 1

2
.

Proof. According to Theorem 1 and Theorem 4, it suffices to show

H(Bin(k, 1
2))

log(k + 1)
≥ 1

2
. (49)

First, note that H(Bin(k, 1
2)) = H(

∑k
i=1Bi), where Bi are iid Bernoulli(1

2). Using Theorem 1
in [36], (but expressing entropy in base 2 instead of base e),

22H(Bin(k, 1
2

)) ≥ k22H(B1) = 4k. (50)

This implies that H(Bin(k, 1
2)) ≥ 1

2 log(4k) and

H(Bin(k, 1
2))

log(k + 1)
≥ 1

2

log(4k)

log(k + 1)
≥ 1

2
. (51)

This shows that the dyadic policy is a 2-approximation policy, i.e. the rate of learning under
the dyadic policy is at least one-half of the rate under an optimal policy.

5.3 Convergence in entropy under the dyadic policy

In real applications, however, we are concerned not only about the expected entropy EπD [H(pN )]
but also about the actual entropy H(pN ) that we obtain in a specific trial. It would be beneficial if
the actual entropy did not deviate too much from its expected value. It turns out to be the case for
the dyadic policy under the assumptions that the prior density f0 is bounded from above. Lemma
5 in the appendix provides a decomposition formula for the actual entropy H(pn) into a sum of
two terms. The first term is a sum of i.i.d. random variables. The second term is a converging
martingale as will be shown in Lemma 6 in the appendix. Finally, Theorem 5 provides almost sure
convergence and asymptotic normality for H(pn) as a direct consequence of Lemma 5 and 6.

Theorem 5. Assume there exists M > 0 such that f0(u) ≤ M for all u ∈ R. Then under the
dyadic policy,

lim
N→∞

H(pN )

N
= −H

(
Bin

(
k,

1

2

))
almost surely, (52)

and

lim
N→∞

H(pN ) +NH
(
Bin

(
k, 1

2

))
√
N

d
=N(0, σ2), (53)

where σ2 is the variance of the random variable log
(
k
X

)
with X ∼ Bin

(
k, 1

2

)
.
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Proof. According to Lemma 6, limN→∞
I2(N)
N = limN→∞

I2(∞)
N = 0 almost surely. Hence, by (86)

in Lemma 5,

lim
N→∞

H(pN )

N
= lim

N→∞

I2(N)

N
− 1

N

N∑
j=1

Zj = 0− E[Z1] = −H
(

Bin

(
k,

1

2

))
(54)

almost surely.
To prove (53), note that

H(pN ) +NH
(
Bin

(
k, 1

2

))
√
N

=
I2(N)−∑N

i=1 Zj +NH
(
Bin

(
k, 1

2

))
√
N

. (55)

Furthermore, since by Lemma 6 I2(N) converges to I2(∞) almost surely and E[|I2(∞)|] <∞,
I2(N)√
N
→ 0 almost surely, which implies I2(N)√

N

L−→ 0. On the other hand, E(Zj) = H
(
Bin

(
k, 1

2

))
and V ar(Zj) = V ar

(
log
(
k
X

))
= σ2, where X ∼ Bin

(
k, 1

2

)
. Hence, by the central limit theorem,

we have
−

∑N
i=1 Zj+NH(Bin(k, 12))√

N

L−→N (0, σ2). Therefore, by Slutsky’s Theorem (Theorem 25.4 in

[37]),

H(pN ) +NH
(
Bin

(
k, 1

2

))
√
N

=
I2(N)√
N

+
−∑N

i=1 Zj +NH
(
Bin

(
k, 1

2

))
√
N

L−→N (0, σ2). (56)

Figure 5 below shows the simulation results for localizing one object, two objects, and three
objects respectively, under the dyadic policy. We assume the prior density f0 is uniform over (0, 1]
and ask 100 questions to locate the objects. The top line corresponds to locating a single object.
In this case, the dyadic policy is actually optimal and identical to the greedy policy as was proved
in [7]. Moreover, the entropy process H(pn) is in this case deterministic. The middle and bottom
lines show the results for respectively k = 2 and k = 3 objects. In this case, the entropy process
H(pn) is not deterministic anymore. The entropy reduction per question which is visualized in the
second column is asymptotically equal to H

(
Bin

(
k, 1

2

))
according to the law of large numbers.

The third column illustrates the asymptotic normality of the entropy process for the dyadic policy.
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Figure 5: Simulation results for localizing one, two, three objects under the dyadic policy. N = 100 and f0 is
uniform over (0, 1]. The horizontal graphs above show the actual trajectories of entropy H(pn), average reduction in

entropy −H(pn)
n

, and normality of
H(pN )+NH(Bin(k, 12 ))√

N
, respectively.

6 The Greedy Policy for Localizing Multiple Objects

In this section, we will present the second policy of interest–the greedy policy. The greedy policy is
a family of policies (not unique) which pursue a maximal one-step expected reduction in entropy.
Despite having a better performance than the dyadic policy, the greedy policy is difficult for us to
parametrize and implement. A description of the greedy policy will be given in Section 6.1 and a
lower bound of its rate is shown in Section 6.2, which verifies our claim of the third inequality in the
main results (8). Furthermore, we will provide an example in which the greedy policy outperforms
the dyadic policy in Section 6.3 and thus this inequality cannot be reversed.

6.1 Description of the greedy policy

Unlike the dyadic policy, the greedy policy is adaptive, that is, the actual policy depends on the
previous answers that we already observed, and at each step the question set An ⊂ R is defined in
(7) to maximize the one-step expected reduction in entropy.
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We prove that this argmin exists below in Theorem 6. The computation of the greedy policy
might be complicated in some cases, however, the greedy policy is strictly better than the dyadic
policy and we will demonstrate this point in Section 6.3.

6.2 The rate of the greedy policy

Although deriving the rate of the greedy policy seems impossible, we are able to employ Lemma 4
in the appendix to derive a lower bound of it as the following.

Theorem 6. The argmin (7) defining the class of greedy policies exists. Under any greedy policy
πG,

R(πG, N) ≥ H
(

Bin

(
k,

1

2

))
. (57)

Proof. Fix some history Bn = (Z,X1:n) = bn. We first show existence of the argmin from (7),
restated here as

arg min
A

E[H(pn+1)|pn, An+1 = A], (58)

where we recall that the minimum is taken over all Borel-measurable subsets of R.
Since conditioning on the posterior distribution pn under any fixed policy is equivalent to

conditioning on {Bn = (Z,A1:n, X1:n) = bn}, using (80) in Lemma 4 in the appendix, we have

E[H(pn+1)|pn, An+1 = A] = E[H(pn+1)|Bn = bn, An+1 = A]

= H(pn|Bn = bn, An+1 = A)−H(Xn+1|Bn = bn, An+1 = A).
(59)

Since the first term H(pn|Bn = bn, An+1 = A) does not depend on {An+1 = A}, (58) can be
rewritten as

arg min
A

H(pn|Bn = bn, An+1 = A)−H(Xn+1|Bn = bn, An+1 = A)

= arg max
A

H(Xn+1|Bn = bn, An+1 = A).
(60)

When n = 0, according to Theorem 3, we can rewrite the above argmax as

arg max
A

H (Bin (k, f0(A))) . (61)

The maximum is achieved by any questions set A such that f0(A) = 1
2 . For example, the first dyadic

question
(
Q
(

1
2

)
, Q(1)

]
∩suppf0 is one of such sets. This also proves HπG(X1|B0) = H

(
Bin

(
k, 1

2

))
.

When n ≥ 1, using (37) in Theorem 3, we can rewrite the argmax in (60) as

arg max
A

H

(∑
S∈En

α(S)PB

(
f0(A ∩ Cs(1))
f0(Cs(1))

, . . . ,
f0(A ∩ Cs(k))
f0(Cs(k))

))
, (62)

where α(S) =
f0(C

s(1)
)...f0(C

s(k)
)∑

T ∈En

f0(C
t(1)

)...f0(C
t(k)

) and
∑
S∈En

α(S) = 1.

Let S = {s ∈ {0, 1}n : Cs 6= ∅}, and fix some arbitrary order of these elements so that S becomes
a sequence rather than a set. For each s ∈ S, let rs(A) = f0(A ∩ Cs)/f0(Cs) so that (62) can be
rewritten as

arg max
A

H

(∑
S∈En

α(S)PB (rs(1)(A), . . . , rs(k)(A))

)
. (63)

21



For each Borel-measurable subset A of R, r(A) = (rs(A) : s ∈ S) is an element of [0, 1]|S|.
Moreover, for each r ∈ [0, 1]|S|, there is a Borel-measurable A ⊂ R such that r(A) = r. This is
because the continuity of the prior cumulative density function allows us to construct the desired
subset A as a union of sets, one for each element of S. In this construction, the subset of A
corresponding to s ∈ S is a subset of Cs containing a fraction rs of the prior mass of Cs. This shows
that the argmax (62) exists iff the following argmax exists:

arg max
r∈[0,1]|S|

H

(∑
S∈En

α(S)PB (rs(1) , . . . , rs(k))

)
. (64)

The function r 7→ H
(∑
S∈En

α(S)PB (rs(1) , . . . , rs(k))
)

is continuous, and the set [0, 1]|S| is
compact, so this argmax is attained. This shows that the argmax (7) defining the class of greedy
policies is well-defined.

We now show a lower bound on the rate of any greedy policy πG by showing a lower bound on
this quantity. The argument above also shows that under any greedy policy πG, for n ≥ 1,

HπG(Xn+1|Bn = bn) = max
A

H(Xn+1|Bn = bn, An+1 = A) (65a)

= max
r∈[0,1]|S|

H

(∑
S∈En

α(S)PB (rs(1) , . . . , rs(k))

)
(65b)

≥ max
r∈[0,1]|S|

∑
S∈En

α(S) H (PB (rs(1) , . . . , rs(k))) (65c)

≥
∑
S∈En

α(S) H

(
PB

(
1

2
, . . . ,

1

2

))
(65d)

= H

(
Bin

(
k,

1

2

))
. (65e)

Above, we use the concavity of the entropy function to obtain the inequality (65c), and that
PB(1

2 , . . . ,
1
2) a special case of a Poisson Binomial Distribution to obtain (65d). The last line, (65e),

follows from
∑
S∈En

α(S) = 1 and the fact that PB(1
2 , . . . ,

1
2) is the Bin

(
k, 1

2

)
distribution.

Furthermore, taking the expectation over all possible realizations of Bn, we obtain for n ≥ 1,

HπG(Xn+1|Bn) ≥ H
(

Bin

(
k,

1

2

))
. (66)

Recall that we already have HπG(X1|B0) = H
(
Bin

(
k, 1

2

))
from previous arguments.

Finally, (81) in Lemma 4 in the appendix shows

R(πG, N) =
H0 − EπG [H(pN )]

N
=

∑N−1
j=0 HπG(Xn+1|Bn)

N
≥ H

(
Bin

(
k,

1

2

))
. (67)

Theorem 6 above implies that the greedy policy never underperforms the dyadic policy.
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6.3 A setting in which the greedy policy is strictly better than the dyadic policy

From the proof above, we can see that the greedy policy is strictly better than the dyadic policy if
there exists some bn such that the inequality (65c) is strict. In the following, based on the previous
examples in Section 4.1, we develop an example showing that the greedy policy is strictly better
than the dyadic policy.

Example 3: Suppose θ1, θ2 are two objects located in (0,1] with the prior f0 being uniform over
(0, 1], andA1 andA2 the first two questions of the dyadic policy, A1 =

(
1
2 , 1
]

andA2 =
(

1
4 ,

1
2

]
∪
(

3
4 , 1
]
.

Now consider the following family of questions A3 indexed by 0 ≤ α, β ≤ 1:

A3 =

(
1− α

4
,
1

4

]
∪
(

2− β
4

,
1

2

]
∪
(

3− β
4

,
3

4

]
∪
(

4− α
4

, 1

]
. (68)

Firstly, assume X1 = 0 and X2 = 2, which corresponds Example 1 in Figure 3. According to (37),
the probability mass function of X3 is

P (X3 = x) = fPB(x; q1 = β, q2 = β), (69)

which is a Binomial distribution with parameter β. The maximum entropy is then achieved when
β = 0.5. Note that the dyadic question, corresponding to α = β = 0.5, verifies this condition and
as a consequence is also a valid question for the greedy policy.

Now, more interestingly, assume that X1 = X2 = 1, which corresponds Example 2 in Figure
3. According to (37), the probability mass function of X3 is

p2(X3 = x) =
1

4
fPB(x; q1 = α, q2 = α) +

1

4
fPB(x; q1 = β, q2 = β)

+
1

4
fPB(x; q1 = β, q2 = β) +

1

4
fPB(x; q1 = α, q2 = α), (70)

which simplifies to

x p2(X3 = x)

0 1
2(1− α)2 + 1

2(1− β)2

1 α(1− α) + β(1− β)

2 1
2α

2 + 1
2β

2

Now, one can choose values for α and β such that p2(X3 = x) = 1
3 , x = 0, 1, 2. Specifically,

α =
1 +

√
3

3

2
and β =

1−
√

3
3

2
. (71)

In this case H(p2(X3 = ·)) = log(3) > 1.5 which shows that the greedy policy is in this case strictly
better than the dyadic policy.

7 Simulation

We now present a toy Computer Vision object localization experiment. We show how the dyadic
policy, analyzed above in the continuous setting using the entropy, can be used in a simulation
setting to locate k instances of a given object within a M ×M digital image.
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The dyadic policy is unique in the fact that it has a simple closed form expression for the
posterior probability that the object instance is located at a pixel location C (See Lemma 3). We
use the term “screening questions” to denote the instance count queries on the subset A. The
“oracle” refers to the expensive but highly accurate classifier that will be run on a selected subset
of the pixel locations. Note that instead of computing the entropy of the posterior distribution, we
use the number of calls to the oracle as the measure of performance.

In this setting we use a M ×M image in which the objects to be located are of size one pixel
and have the intensity value 1 and the rest of the pixels are of intensity 0, with k = {2, 3, 10} and
M = {8, . . . , 1024}. This simulation setting is far from a realistic Computer Vision application
as the number of instances in each dyadic query set A will not be readily available and we would
need to train an appropriate Machine Learning classifier that computes this value, albeit with noise
( [31], [32], [33]). Moreover, in realistic applications, the number of objects k will not be known in
advance and the answers to the screening questions could be corrupted with noise. Nevertheless,
this simulation experiment provides useful analysis of the performance of the dyadic policy and the
algorithms that locate object instances using the posterior distribution computed from the answers
to the screening questions using Lemma 3.

We consider algorithms that proceed in 2 phases, eventually iterated. The first phase consists
in querying the dyadic sets. As opposed to the continuous domain, there is here a limited supply
of dyadic sets. Choosing for M a power of 2, there are logM dyadic horizontal queries and logM
dyadic vertical queries. The two rows of Figure 6 present the dyadic questions for M = 16. The
second phase consists in ordering the pixels and querying the oracle according to this ordering.
We compare three algorithms: Posterior Rank (PR), Iterated Posterior Rank (IPR), and Entropy
Pursuit (EP). We will see that all these three algorithms significantly outperform the baseline
algorithm–the Index Rank (IR) algorithm–in terms of the expected number of calls to the oracle
(see Figure 8).

The algorithms are motivated by the computation of E[N(C)|BN ], the expected number of
instances within pixel C given the history of screening questions and answers BN . The following
lemma provides an explicit formula for this posterior probability. Using this result, we can order
the pixels in decreasing order of E[N(C)|BN ] and run the oracle according to this order until all
the instances of the object are found.

Lemma 3. Under the dyadic policy, for each object θi and each binary sequence s ∈ {0, 1}N , the
posterior likelihood P (θi ∈ Cs|BN ) satisfies

P (θi ∈ Cs|BN ) =

N∏
j=1

(
Xj

k

)sj (
1− Xj

k

)1−sj
, (72)

Moreover,
E[N(Cs)|BN ] = kP (θ1 ∈ Cs|BN ) , (73)

where N(Cs) denotes the number of objects located in the set Cs.

Proof. First of all, note that under the dyadic policy, P (θi ∈ Cs|BN ) = P (θi ∈ Cs|X1:N ). This is
because the questions A1:N are deterministic by construction, and Z is independent of σ(θ,X1:N ),
so that Z,A1:N can be removed from the condition. Let x1:N ∈ {0, . . . , k}N be a fixed realization of
X1:N . Now we consider the event {θi ∈ Cs|X1:N = x1:N}, for a fixed binary sequence s ∈ {0, 1}N .
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Let us denote by EN (Cs) the collection of matrices S ∈ EN that are consistent with the event
{θi ∈ Cs|X1:N = x1:N}, i.e. the i-th column of S is s(i) = s. Note that p0(CS) = 2−Nk for all
S ∈ EN under the dyadic policy. For simplicity, define DCs =

⋃
S∈EN (Cs)CS . Therefore, using

Lemma 2, we can compute the probability of P (θ1 ∈ Cs|X1:N = x1:N ) as

P (θ1 ∈ Cs|X1:N = x1:N )

=

∫
u1:k∈DCs

pN (u1:k) du1:k

=
∑

S∈EN (Cs)

∫
u1:k∈CS

p0(u1:k)∑
S∈EN

p0(CS)
du1:k

=
∑

S∈EN (Cs)

1

2−Nk|EN |

∫
u1:k∈CS

p0(u1:k) du1:k

=
|EN (Cs)|
|EN |

,

(74)

where |EN (Cs)|, |EN | denote the cardinalities of EN (Cs), EN , respectively. |EN | can be computed
using (89) in the appendix. The matrices in EN (Cs) need to satisfy one more constraint–the i-th
column is fixed to be s. Using similar arguments, we have

|EN (Cs)| =
N∏
n=1

(
k − 1

xn − sn

)
1{0≤xn−sn≤k−1}. (75)

Combining (74), (89) and (75) together yields,

P (θi ∈ Cs|X1:N = x1:N ) =

N∏
n=1

( k−1
xn−sn

)1{0≤xn−sn≤k−1}

N∏
n=1

( k
xn

)

=
N∏
n=1

{
xn
k , if sn = 1

1− xn
k , if sn = 0

.

(76)

Equivalently,

P (θi ∈ Cs|X1:N = x1:N ) =
N∏
n=1

(xn
k

)sn (
1− xn

k

)1−sn
. (77)

Based on the lemma above, we obtain the following PR Algorithm.

Algorithm 1 Posterior Rank (PR) Algorithm

1: Compute the answers to the screening questions.
2: Compute the posterior rank r according to (72).
3: Run the oracle on the pixels according to r until all the objects are found.

The IPR algorithm is a variation of the PR Algorithm. As before, the pixels are searched in
decreasing order of the expected number of objects. When the oracle locates one(several) object(s)
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at a pixel, the answers of the screening questions for the remaining objects are recomputed based
on the location of the objects already found. This is equivalent to masking the objects already
found and asking the screening questions again. The expected number of objects per pixel is then
recomputed and provides an updated ranking for the remainder of the search. The algorithm is
provided below.

Algorithm 2 Iterated Posterior Rank (IPR) Algorithm

1: repeat
2: Compute the answers to the screening questions.
3: Compute the posterior rank r according to (72).
4: Run the oracle on the pixels according to r until one (several) object(s) is (are) found at a pixel.
5: Mask this (these) object(s).
6: until all the objects are found.

Figure 6 and 7 illustrate the procedures in the IPR algorithm for a 16 × 16 image with k = 4
objects. Figure 6 illustrates the screening questions under the dyadic policy, with light regions
marking the questions sets. The first line of 7 shows the true but unknown locations of the objects
in each iteration of the IPR algorithm. The second line shows the expected number of objects
within each pixel computed after screening questions in each iteration, respectively, with lighter
regions having a higher expected number of objects.

Figure 6: The queried regions under the dyadic policy for a 16 × 16 image shown in white.

Figure 7: (row 1) Example image with 4 objects initially, one object is found after each iteration of the IPR
algorithm. (row 2) The corresponding posterior distribution after each iteration. Light regions indicate pixels more
likely to contain the object, while dark regions are less likely.

The Entropy Pursuit (EP) algorithm is a greedy algorithm aimed at reducing the expected
entropy on the joint location of the objects. It has been studied and used for locating and tracking
objects in [38, 39, 40, 41, 42]. This algorithm can be related to the IPR algorithm. The differences
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Figure 8: The mean number of calls to the oracle over 100 samples plotted against the image size for k = 2, k = 3
and k = 10 respectively using the algorithms described in section.

between EP and IPR are: i) EP uses a different ordering criterion; ii) EP updates the ordering
each time after running the oracle at a pixel instead of after an object being found. Specifically,
EP computes for each pixel the expected entropy reduction in the distribution of the location of
the objects which would be achieved by running the oracle at this pixel. It then selects the pixel
for which this quantity is maximal. The EP algorithm is provided below.

Algorithm 3 Entropy Pursuit (EP) Algorithm

1: Compute the answers to the screening questions.
2: Obtain EN defined in (25), the collection of matrices characterizing possible joint object locations.
3: repeat
4: Select the pixel for which the expected entropy reduction is maximum.
5: Run the oracle at this pixel.
6: Remove all the inconsistent matrices from the collection EN .
7: until all the objects are found.

We use simulations to compare the performances of the three algorithms described above with a
baseline algorithm, called Index Rank (IR) . IR sweeps the image from left to right, top to bottom,
until all the objects of the object are found. For the sake of simplicity, the object to be found in
our simulation is a dot of size 1 pixel. We use 100 random assignments for the locations of the
object for each k and each image size in the simulation, and measure the number of calls to the
oracle required in each case.

Figure 8, compares the algorithms for k = 2, k = 3 and k = 10 object for image sizes {8 ×
8, 16×16, . . . , 1024×1024}. Algorithms PR, IPR and EP require a smaller average number of calls
to the oracle compared to the baseline IR. An example will show how dramatic this is for large size
images. In the case of 1024×1024 pixel images and k = 2 objects, IR requires 220 evaluations of the
oracle while IPR requires less than 28 on average. IPR is also much more efficient than PR. IPR
and EP show similar performances, however, IPR is superior to EP in terms of the computational
complexity. Due to the EP algorithm’s large computational and memory requirements, we have
only plotted EP for k = 2 and k = 3, and have only gone up to 512× 512 image for k = 3.
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8 Conclusion

We have considered the problem of twenty questions with noiseless answers, in which we aimed
at locating multiple objects simultaneously. There are a variety of applications associated with
this problem, such as group testing, computer vision, stochastic simulation and bioinformatics. By
adopting the approach of maximizing the rate of reduction in expected entropy of the posterior
distribution, we derived an upper bound on the expected entropy and studied two classes of policies,
the dyadic policy and the greedy policy. Although the greedy policy, as we have shown, outperforms
the dyadic policy in reducing the expected entropy, the latter employs a series of pre-determined
question sets and thus is easy to implement. In addition, the dyadic policy beats traditional
policies such as the sequential bifurcation policy and is relatively stable in the sense that the average
reduction in entropy converges under certain assumptions (Section 5.3).

Also, there are several questions calling for future works. First, in real applications, noisy an-
swers provide a more natural and accurate approximation but we only considered noiseless answers
in this paper. Second, we assumed the number of the objects is known, but in a more general
setting, this assumption should be released. Third, another objective function such as the mean-
squared error can replace the expected entropy, which measures the performance of a specific policy
differently. We feel that researches in these and other questions will be prosperous and fruitful.
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Appendix

A Lemmas and Proofs

We first introduce some notation, used here, and throughout the paper. For any pair of random
variables W,V , we define H(W‖V ) to be the random variable taking the value

−
∫ ∞
−∞

f(w|V = v) log f(w|V = v) dw (78)

for each V = v, assuming the conditional density function f(w|V = v) exists. The “usual” condi-
tional entropy is related to it by

H(W |V ) = E[H(W‖V )]. (79)

We now provide here, in Lemma 4, an expression for the expected entropy after additional
questions. This lemma is based on the idea that each additional question reduces the entropy of
θ1:k by an amount that can be expressed in terms of the conditional entropy of the answer to that
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question. The total entropy reduction can then be computed as a sum of the contributions from
each question, which we use later to study the expected total entropy reduction under specific
policies.

Lemma 4. Under any policy π,

E[H(pn+1)|Bn] = H(pn)−H(Xn+1‖Bn), for all n = 0, 1, . . . , N − 1, (80)

Moreover,

E[H(pN )] = H0 −
N−1∑
n=0

H(Xn+1|Bn). (81)

Proof. First of all, we prove the recursive relation (80). H(pn) is the entropy of the posterior
distribution of θ, which is random through its dependence on the past history Bn, hence we can
rewrite it as H(pn) = H(θ‖Bn). Similarly, H(pn+1) = H(θ‖Bn+1) = H(θ‖Bn, An+1, Xn+1) =
H(θ‖Bn, Xn+1) as An+1 is Bn-measurable under any valid policy π. Since all three terms in (80)
are σ(Bn)-measurable random variables, it suffices to prove (80) holds for any fixed history Bn = bn,
i.e.

E[H(θ‖Bn, Xn+1)|Bn = bn] = H(θ|Bn = bn)−H(Xn+1|Bn = bn). (82)

Using information theoretic arguments, we have

E[H(θ‖Bn, Xn+1)|Bn = bn] =

k∑
xn+1=0

H(θ|Bn = bn, Xn+1 = xn+1)P (Xn+1 = xn+1|Bn = bn) (83a)

= H(θ|Xn+1, Bn = bn) (83b)

= H(θ,Xn+1|Bn = bn)−H(Xn+1|Bn = bn) (83c)

= H(Xn+1|θ,Bn = bn) +H(θ|Bn = bn)−H(Xn+1|Bn = bn) (83d)

= H(θ|Bn = bn)−H(Xn+1|Bn = bn) (83e)

where (83b) comes from the definition of conditional entropy and (83c), (83d) come from the chain
rule for conditional entropy. (83e) holds as the first term in (83d) vanishes because the information
of θ completely determines the answer Xn+1. This proves (82).

Now, in order to prove (81), let us first obtain a recursive relation in unconditional expected
entropy of posterior distributions. Taking the expectation over Bn on both sides of (80),

E [E[H(pn+1)|Bn]] = E[H(pn)]− E [H(Xn+1‖Bn)] . (84)

Note that E [E[H(pn+1)|Bn]] = E[H(pn+1)] by the iterated conditioning property of conditional
expectation. Moreover, E [H(Xn+1‖Bn)] = H(Xn+1|Bn) according to the definition of conditional
entropy in (79). Hence, (84) is equivalent to

E[H(pn+1)] = E[H(pn)]−H(Xn+1|Bn). (85)

Applying (85) iteratively for n = N − 1, . . . , 0, we obtain (81), which concludes the proof.

Note that the dyadic policy is deterministic, i.e., it does not make use of the random seed Z. As
a consequence, in the following, we use X1:n to denote the history up to time n without including
Z and A1:n.
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Lemma 5. Under the dyadic policy, for all n = 1, 2, . . . , N ,

H(pn) = −
n∑
j=1

Zj + I2(n), (86)

where I2(n) is a random variable and Zj = k− log
(
k
Xj

)
with Xj following i.i.d binomial distribution

Bin(k, 1
2).

Proof. Let X1:n = x1:n be fixed. According to Lemma 2,

pn(u1:k) =
p0(u1:k)

p0

( ⋃
S∈En

CS

) =
f0(u1) . . . f0(uk)∑

S∈En

f0(Cs(1)) . . . f0(Cs(k))
, (87)

where (u1:k) ∈ C :=
⋃
S∈En

CS .

Under the dyadic policy, the support of f0 is partitioned into 2n subsets with identical probability
masses after the final step and each Cs(i) is one such subset, for i = 1, 2, . . . , k. Thus, we have

f0(Cs(i)) = 2−n, for i = 1, 2, . . . , k and S ∈ En. (88)

Let |En| be the cardinality of En. Note that under the dyadic policy, every binary sequence s of
length N corresponds to a nonempty set Cs. Furthermore, in step j, there are

(
k
xj

)
ways to choose

the jth row in the matrix satisfying the definition in (25), for j = 1, 2, . . . , n. Thus, by the product
rule,

|En| =
n∏
j=1

(
k

xj

)
. (89)

By (88) and (89),

p0(C) =
∑
S∈En

f0(Cs(1)) . . . f0(Cs(k)) = 2−nk
n∏
j=1

(
k

xj

)
. (90)

Combining the result above and the definition of the differential entropy, we have

H(pn) =−
∫
C

pn(u1:k) log(pn(u1:k)) du1:k

=−
∫
C

p0(u1:k)

p0(C)
log

(
p0(u1:k)

p0(C)

)
du1:k

=

 log (p0(C))

p0(C)

∫
C

p0(u1:k) du1:k

+

− 1

p0(C)

∫
C

p0(u1:k) log (p0(u1:k)) du1:k


=I1(n) + I2(n),

(91)

where I1(n) and I2(n) denote the first term and the second term in the last equation above. I1(n)
can be easily computed as

I1(n) =
log (p0(C))

p0(C)

∫
C

p0(u1:k) du1:k = log (p0(C)) = −

nk − n∑
j=1

log

(
k

xj

) . (92)
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Now consider X1:n as random variables. By Theorem 3, we see that under the dyadic policy,
X1:n is a sequence of i.i.d. random variables Bin

(
k, 1

2

)
. Moreover, I2(n) is random through its

dependence on the random support C. Therefore, combining (91) and (92), we prove the claim in
Lemma 5 by setting Zj = k − log

(
k
Xj

)
.

Define I2(0) = H(p0) = H0 so that (86) is also satisfied for n = 0. Applying the result above,
we can furthermore analyze the term I2(n) and derive the following lemma.

Lemma 6. Assume there exists M > 0 such that f0(u) ≤ M for all u ∈ R. Then the random
variable I2(n) in (86) converges to a random variable I2(∞) almost surely as n→∞, where I2(∞)
is a random variable and E[|I2(∞)|] <∞.

Proof. We prove almost sure convergence using the martingale convergence theorem (see Theorem
35.5 in [37]). First, let us calculate the expected value of Zj as follows.

E(Zj) =
k∑
j=0

(
k − log

(
k

j

))(
k

j

)
2−k. (93)

Therefore, E(Zj) = H
(
Bin

(
k, 1

2

))
since

H

(
Bin

(
k,

1

2

))
= −

k∑
j=0

(
k

j

)
2−k log

((
k

j

)
2−k
)

=

k∑
j=0

(
k − log

(
k

j

))(
k

j

)
2−k. (94)

Now, let us verify that I2(n) is a martingale. According to (86),

E[I2(n+ 1)|X1:n] = E

H(pn+1) +

n+1∑
j=1

Zj

∣∣∣∣∣X1:n

 (95a)

= H(pn)−H(Xn+1‖X1:n) +
n∑
j=1

Zj + E[Zn+1|X1:n] (95b)

= I2(n)−H(Xn+1‖X1:n) + E[Zn+1|X1:n] (95c)

= I2(n)−H
(

Bin

(
k,

1

2

))
+ E[Zn+1] (95d)

= I2(n), (95e)

where (95b) is true by (80) in Lemma 4 and the fact that Z1:n is σ(X1:n)-measurable. (95d) holds
because we have proved under the dyadic policy, Xn+1|X1:n ∼ Bin

(
k, 1

2

)
, which is independent

of X1:n, and Zn+1 is also independent of X1:n. (95e) holds because we have proved E[Zn+1] =
H
(
Bin

(
k, 1

2

))
.
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Next, we want to show that E[|I2(n)|] <∞. Let us fix X1:n = x1:n and expand I2(n) in as

I2(n) = − 1

p0(C)

∑
S∈En

∫
CS

f0(u1) . . . f0(uk) log (f0(u1) . . . f0(uk)) du1:k

= − 1

p0(C)

∑
S∈En

k∑
i=1

 ∫
C

s(i)

f0(ui) log(f0(ui)) dui

k∏
j 6=i

∫
C

s(j)

f0(uk) duj


= − 1

p0(C)

∑
S∈En

k∑
i=1

2−n(k−1)

∫
C

s(i)

f0(ui) log(f0(ui)) dui.

(96)

Now consider the integral
∫
C

s(i)
f0(ui) log(f0(ui)) dui. Since f0(ui) ≤M , we can obtain an upper

bound for
∫
C

s(i)
f0(ui) log(f0(ui)) dui as∫

C
s(i)

f0(ui) log(f0(ui)) dui ≤ logM

∫
C

s(i)

f0(ui) dui = 2−n logM. (97)

Substituting (90) and (97) into (96), we have

I2(n) ≥ −k logM. (98)

Furthermore, define I+
2 (n) = max(I2(n), 0), I−2 (n) = max(−I2(n), 0) and we have

E[|I2(n)|] = E[I+
2 (n)] + E[I−2 (n)] = E[I2(n)] + 2E[I−2 (n)] ≤ H0 + 2k logM, (99)

where the last equation follows from the fact that E[I2(n)] = I2(0) = H0 since I2 is a martingale and
I−2 (n) ≤ k logM by (98). Therefore, using the martingale convergence theorem, I2(n) converges to
a random variable I2(∞) almost surely with E[|I2(∞)|] ≤ H0 + 2k logM .

From the proof above we can see that if f0 is uniform over (0, 1], f0(ui) = 1 for all ui ∈ (0, 1]

and thus the term I2 is 0. Therefore, in this case, H(pn) = −
(
nk −∑n

j=1 log
(
k
Xj

))
.

B Definition of the Sequential Bifurcation Policy

In this appendix, we define the sequential bifurcation policy used as a benchmark in Figure 2.
This policy is based on the sequential bifurcation policy of [27], but adapted slightly to the setting
considered in this paper.

We define the sequential bifuration (SB) policy as follows. At each point in time n, SB maintains
a disjoint collection of intervals Dn = {Dn,1, ...., Dn,mn}. At time 0, D0 = {R}, and for each n, SB
obtains Dn+1 and An+1 recursively as follows. First, SB chooses the interval D∗n in Dn with the
largest mass under the prior, i.e.,

D∗n ∈ arg max
D∈Dn

∫
D
f0(u) du. (100)
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Then, SB obtains An+1 by splitting D∗n at its conditional median under the posterior, and taking the
left-hand portion. SB then creates Dn+1 by adding to Dn \D∗n those intervals An+1 and D∗n \An+1

shown by Xn+1 to have at least one object.
This version of the sequential bifurcation policy differs slightly from the policy presented in [27]

in that (1) it is designed for the continuum rather for a discrete domain; (2) it is designed for the
case with known k, while running it for unknown k (as does [27]) would require an additional query
of the number of objects in R at the start; (3) it is generalized for the case of a non-uniform prior
distribution.
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