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This work presents an optimal model management strategy that exploits
multifidelity surrogate models to accelerate the estimation of statistics of
outputs of computationally expensive high-fidelity models. Existing accel-
eration methods typically exploit a multilevel hierarchy of surrogate models
that follow a known rate of error decay and computational costs; however, a
general collection of surrogate models, which may include projection-based
reduced models, data-fit models, support vector machines, and simplified-
physics models, does not necessarily give rise to such a hierarchy. Our mul-
tifidelity approach provides a framework to combine an arbitrary number of
surrogate models of any type. Instead of relying on error and cost rates, an
optimization problem balances the number of model evaluations across the
high-fidelity and surrogate models with respect to error and costs. We show
that a unique analytic solution of the model management optimization prob-
lem exists under mild conditions on the models. Our multifidelity method
makes occasional recourse to the high-fidelity model; in doing so it provides
an unbiased estimator of the statistics of the high-fidelity model, even in the
absence of error bounds and error estimators for the surrogate models. Nu-
merical experiments with linear and nonlinear examples show that speedups
by orders of magnitude are obtained compared to Monte Carlo estimation
that invokes a single model only.

1. Introduction

Multilevel techniques have a long and successful history in computational science and
engineering, e.g., multigrid for solving systems of equations [8, 25, 9], multilevel dis-
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cretizations for representing functions [46, 18, 10], and multilevel Monte Carlo and multi-
level stochastic collocation for estimating mean solutions of partial differential equations
(PDEs) with stochastic parameters [27, 22, 41]. These multilevel techniques typically
start with a fine-grid discretization—a high-fidelity model—of the underlying PDE or
function. The fine-grid discretization is chosen to guarantee an approximation of the out-
put of interest with the accuracy required by the current problem at hand. Additionally,
a hierarchy of coarser discretizations—lower-fidelity surrogate models—is constructed,
where a parameter (e.g., mesh width) controls the trade-off between error and computa-
tional costs. Changing this parameter gives rise to a multilevel hierarchy of discretiza-
tions with known error and cost rates. Multilevel techniques use these error and cost
rates to distribution the computational work among the discretizations in the hierarchy;
shifting most of the work onto the cheap lower-fidelity surrogate models but correcting
with a few expensive high-fidelity model outputs to establish accuracy guarantees on
the overall result. However, in many situations, we are confronted with richer more het-
erogeneous sets of models than just hierarchies of fine- and coarse-grid discretizations.
For example, available surrogate models may include projection-based reduced models
[40, 39, 24, 3], data-fit interpolation and regression models [21], machine-learning-based
support vector machines [16, 44, 11], and simplified-physics models [2, 33]. Distributing
work among general surrogate models (i.e., deciding which models to use and when) is
challenging because collections of general surrogate models typically do not give rise to
a multilevel hierarchy with known error and cost rates.

We present a multifidelity framework to exploit lower-fidelity surrogate models of any
type for the acceleration of the Monte Carlo estimation of statistics of outputs of large-
scale high-fidelity models. The key ingredient of our multifidelity Monte Carlo (MFMC)
method is an optimization problem to distribute the computational work among the
models such that the mean squared error (MSE) of the multifidelity estimator is mini-
mized for a given computational budget. Thus, our multifidelity method distributes work
using an optimization problem rather than error and cost rates, because such rates are
unavailable for general collections of models. We show that the optimization problem has
a unique and analytic solution under mild conditions on the models. These conditions,
for example, prevent the use of models that are both inaccurate and costly to evalu-
ate. Multilevel techniques guarantee similar conditions on the models by construction,
because the model hierarchy is generated by changing the discretization parameter. In
contrast, our multifidelity approach targets optimal exploitation of a given set of models,
and therefore requires explicit conditions that are revealed by analysis of our optimiza-
tion problem formulation. We prove that there always exists a subset of the given set
of models that satisfies these conditions. We develop our methodology in the context of
computational models, but our optimization-based multifidelity approach is applicable
to information sources beyond models, e.g., experiments, expert opinions, and lookup ta-
bles. If each information source has associated a certain fidelity and cost, the solution of
our optimization problem determines the optimal number of queries of each information
source such that the multifidelity estimator with minimal MSE is obtained.

Several approaches in the literature combine a high-fidelity model with general sur-
rogate models to accelerate computations. Multifidelity optimization uses surrogate
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models to accelerate convergence to an optimal solution [4, 1, 30, 21]. In statistical
inference, two-stage Markov chain Monte Carlo techniques rely on surrogate models
to decide whether a proposed sample is further processed by the high-fidelity model,
discarded, or used to adapt the surrogate model [14, 19, 17]. We focus here on the
estimation of statistics of outputs of models, a setting for which multifidelity methods
are often based on control variates. The control variates method provides a framework
to derive an estimator with a lower variance than the Monte Carlo estimator by com-
bining samples drawn from the output random variable of interest with samples drawn
from a correlated auxiliary random variable [31]. The multilevel Monte Carlo method
[27, 22, 15, 42] uses coarse-grid approximations as surrogate models and distributes the
work among the models using known error and cost rates. In [6, 5], the control variate
method is used to combine the high-fidelity model with a reduced basis model. The focus
is on the construction of the reduced basis model with a problem-specific greedy method
that tailors the reduced model towards variance reduction. In [32, 33], general surrogate
models, including reduced basis models, and other sources of approximate information
(e.g., past model evaluations for different parameters) are exploited in a control variate
framework to reduce the computational costs of optimization under uncertainty. The
approach in [45] applies the multilevel Monte Carlo method to reduced basis models and
approximately solves an optimization problem to derive the number of model evalua-
tions, which requires a posteriori error estimators of the reduced models. StackedMC
[43] uses the control variate method and data-fit surrogate models. The surrogate mod-
els are constructed with supervised learning techniques. Another body of work combines
the high-fidelity model with a surrogate model in the context of the Monte Carlo method
with importance sampling [29, 28, 13, 37, 34].

Our MFMC method is based on the multifidelity approach introduced in [32, 33],
which considers the use of general surrogate models to accelerate Monte Carlo sampling.
That work derives a multifidelity estimator using the control variate method, and bal-
ances model evaluations between the high-fidelity model and a single surrogate model
such that the MSE of the estimator is minimized for a given computational budget. Our
MFMC method follows a similar approach but we formulate an optimization problem
that explicitly allows an arbitrary number of surrogate models and surrogate models of
any type. Our mathematical analysis of the solution of the optimization problem con-
firms that combining surrogate models of different type, varying approximation quality,
and varying costs, is often more beneficial than combining accurate surrogate models
only. In this sense, surrogate models that inform different aspects of the high-fidelity
model are better than surrogate models that are accurate but lack a rich diversity. Our
analysis shows that the variance reduction obtained by including an additional surrogate
model in the MFMC estimator depends on the new information introduced by the sur-
rogate model compared to the other models in the MFMC estimator, rather than solely
on the approximation quality and costs of the surrogate model itself.

Unbiasedness of our MFMC estimator is established by occasional recourse to the
high-fidelity model. Thus, our MFMC method does not rely on error bounds of the
surrogate models and provides an unbiased estimator independent of the approximation
quality of the surrogate models. Our MFMC method is applicable to black-box high-
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fidelity and surrogate models, i.e., models for which we can evaluate a specified input to
obtain the output, but for which we do not have access to the model operators (in an
assembled form or through their actions on a vector).

This paper is organized as follows. Section 2 describes the problem setup. Section 3
defines the MFMC estimator, derives the optimization problem to balance the number
of model evaluations, and provides an interpretation and discussion. Section 4 demon-
strates the MFMC estimator on a model that describes the bending of a locally damaged
plate and on a model of a tubular reactor that exhibits an oscillatory regime. Runtime
savings of up to four orders of magnitude are achieved. Section 5 draws conclusions.

2. Problem setup

Section 2.1 introduces the high-fidelity model, surrogate models, and discusses the Monte
Carlo method. Section 2.2 formulates the problem of interest.

2.1. Models

Let d ∈ N and define the input domain D ⊂ Rd and the output domain Y ⊂ R. An
information source is a function f : D → Y that maps an input z ∈ D to an output y ∈ Y.
In this work, all our information sources are computational models that are evaluated at
an input z ∈ D to obtain an output y ∈ Y; however, our methodology extends to other
information sources such as experiments, expert opinions and lookup tables, provided
these information sources can be evaluated for any specified input realization. In the
following, we have a high-fidelity model denoted as f (1) : D → Y and (lower-fidelity)
surrogate models f (2), . . . , f (k) : D → Y with k ∈ N. We consider the high-fidelity model
f (1) as our “truth” model. Note that we use the same input domain for all models
f (1), . . . , f (k). The costs of evaluating a model f (i) are wi ∈ R+ for i = 1, . . . , k, where
R+ = {x ∈ R : x > 0}. The costs vector is w = [w1, . . . , wk]

T ∈ Rk+, with the set Rk+
containing k-dimensional vectors with components in R+. There are no assumptions on
the surrogate models. In particular, we explicitly avoid assumptions on the pointwise
errors

|f (1)(z)− f (i)(z)| , z ∈ D, i = 2, . . . , k , (1)

with respect to the high-fidelity model f (1). Bounds for (1) are unnecessary for our
methodology, and therefore our methodology is developed independently of the avail-
ability of such accuracy guarantees on the surrogate models.

Let Ω be a sample space and Z : Ω→ D a random variable with range D. Independent
and identically distributed (i.i.d.) realizations of Z are denoted as z1, . . . ,zm ∈ D, where
m ∈ N. The variance Var[f (i)(Z)] of f (i)(Z) is denoted

σ2
i = Var[f (i)(Z)] , (2)

for i = 1, . . . , k, and the Pearson product-moment correlation coefficient is

ρi,j =
Cov[f (i)(Z), f (j)(Z)]

σiσj
, (3)
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for i = 1, . . . , k and j = 1, . . . , k. In the following, we ignore models that are uncorrelated
to the high-fidelity model, and therefore we have ρ2

1,i > 0 for i = 1, . . . , k. We define
ρi,k+1 = 0 for i = 1, . . . , k.

The Monte Carlo method draws m i.i.d. realizations z1, . . . ,zm ∈ D of Z and estimates
E[f (i)(Z)] by

y(i)
m =

1

m

m∑
j=1

f (i)(zj) , (4)

for i = 1, . . . , k. The corresponding Monte Carlo estimator y
(i)
m (Z) is an unbiased esti-

mator of E[f (i)(Z)] [38]. If the variance σ2
i ∈ R (i.e., if the variance is finite), then the

MSE of the estimator y
(i)
m (Z) with respect to E[f (i)(Z)] is

e(y(i)
m (Z)) = E

[(
E[f (i)(Z)]− f (i)(Z)

)2
]

=
Var[f (i)(Z)]

m
.

The cost of computing the Monte Carlo estimator are

c(y(i)
m (Z)) = wim,

because the model f (i) is evaluated at m inputs, each with evaluation cost wi.

2.2. Problem formulation

Our goal is to estimate the expectation

s = E[f (1)(Z)] (5)

of the high-fidelity model f (1) with realizations of the random variable Z as inputs. We
seek an estimator with a computational budget p ∈ R+ that optimally exploits the surro-
gate models f (2), . . . , f (k) to achieve a lower MSE than the Monte Carlo estimator with
the same computational budget p. Stated differently, we seek a multifidelity estimator
that achieves the same MSE as the Monte Carlo estimator but with a lower computa-
tional cost. We also seek an estimator that is unbiased with respect to expectation (5),
even in the absence of accuracy guarantees such as (1) on the surrogate models.

3. Multifidelity Monte Carlo

Our MFMC method derives auxiliary random variables from surrogate models and com-
bines them into the unbiased MFMC estimator using the control variate method. An op-
timization problem distributes the number of model evaluations among the high-fidelity
and the surrogate models. The optimization problem balances correlation strength and
relative computational costs such that the MSE of the estimator is minimized for a given
computational budget. We prove that the MFMC estimator is unbiased and derive the
condition under which the MFMC estimator has a lower MSE than the Monte Carlo
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estimator with the same computational budget. Section 3.1 formulates the MFMC esti-
mator and shows that it is unbiased. Sections 3.2 to 3.4 derive the optimization problem
to balance the number of model evaluations across the high-fidelity and surrogate models
and provide an interpretation and discussion. Section 3.5 and Section 3.6 give practical
considerations and summarize the MFMC method in Algorithm 2.

3.1. Multifidelity Monte Carlo estimator

Consider the k models f (1), . . . , f (k). Let m = [m1, . . . ,mk]
T ∈ Nk be a vector with

integer components 0 < m1 ≤ · · · ≤ mk and let

z1, . . . ,zmk
∈ D (6)

be mk i.i.d. realizations of the random variable Z. For i = 1, . . . , k, evaluate model f (i)

at the mi realizations z1, . . . ,zmi of (6) to obtain

f (i)(z1), . . . , f (i)(zmi) .

The component mi of m is the number of evaluations of model f (i) for i = 1, . . . , k. De-

rive the Monte Carlo estimate y
(i)
mi as in (4) from themi model evaluations f (i)(z1), . . . , f (i)(zmi)

for i = 1, . . . , k. Additionally, compute the Monte Carlo estimate y
(i)
mi−1 from the mi−1

model evaluations f (i)(z1), . . . , f (i)(zmi−1) for i = 2, . . . , k. The Monte Carlo estimate

y
(i)
mi−1 reuses the first mi−1 model evaluations that are used for y

(i)
mi , and therefore the

corresponding estimators y
(i)
mi(Z) and y

(i)
mi−1(Z) are dependent. The MFMC estimate ŝ

of s is then

ŝ = y(1)
m1

+
k∑
i=2

αi

(
y(i)
mi
− y(i)

mi−1

)
, (7)

where α2, . . . , αk ∈ R are coefficients that weight the differences y
(i)
mi−y

(i)
mi−1 of the Monte

Carlo estimates y
(i)
mi and y

(i)
mi−1 for i = 2, . . . , k. The MFMC estimator is denoted as ŝ(Z).

The structure of our MFMC estimator (7) is similar to the structure of multilevel Monte
Carlo estimators [15, 42]. Both correct an estimate of high-fidelity quantities with a
sum of estimates of differences of lower-fidelity quantities. The distinguishing feature
of our MFMC method is the optimal selection of the number of model evaluations m
and of the coefficients α2, . . . , αk that is applicable to surrogate models of any type, as
introduced in the subsequent sections.

The following lemma shows that the MFMC estimator is an unbiased estimator of s.

Lemma 1. The MFMC estimator ŝ(Z) is an unbiased estimator of the expectation s of
the high-fidelity model f (1).

Proof. First note that we havem ∈ Nk andm1 > 0 and therefore each model f (1), . . . , f (k)

is evaluated at least once. We show that E[ŝ(Z)] = E[f (1)(Z)]. With the linearity of the
expectation, we have

E[ŝ(Z)] = E[y(1)
m1

(Z)] +

k∑
i=2

αi

(
E[y(i)

mi
(Z)]− E[y(i)

mi−1
(Z)]

)
. (8)
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The individual Monte Carlo estimators in (8) are unbiased, see Section 2.1, and therefore
it follows that

E[ŝ(Z)] = E[f (1)(Z)] +

k∑
i=2

αi

(
E[f (i)(Z)]− E[f (i)(Z)]

)
,

which simplifies to E[ŝ(Z)] = E[f (1)(Z)].

Because the MFMC estimator ŝ(Z) is unbiased, the MSE of ŝ(Z) with respect to s is

e(ŝ(Z)) = E[(s− ŝ(Z))2] = Var[ŝ(Z)] . (9)

The costs of deriving an MFMC estimate ŝ are

c(ŝ(Z)) =
k∑
i=1

wimi = wTm ,

because to compute for i = 2, . . . , k

y(i)
mi
− y(i)

mi−1

the model f (i) is evaluated at the samples z1, . . . ,zmi , where the first mi−1 samples are

reused to derive y
(i)
mi−1 .

3.2. Optimal number of model evaluations

The MFMC estimator defined in (7) depends on the number of model evaluations m ∈
Nk and on the coefficients α2, . . . , αk ∈ R. We formulate the selection of the number
of model evaluations and of the coefficients as an optimization problem. We first show
Lemmata 2 and 3 before we derive the optimization problem and present its solution in
Theorem 1.

Lemma 2. Consider the Monte Carlo estimators y
(l)
mi(Z) and y

(t)
mj (Z) with 1 ≤ i, j, l, t ≤

k. We find for the covariance

Cov[y(l)
mi

(Z), y(t)
mj

(Z)] =


1
mi
ρl,tσlσt if l 6= t and mi ≥ mj

1
mj
ρl,tσlσt if l 6= t and mi < mj

1
mi
σ2
l if l = t and mi ≥ mj

1
mj
σ2
l if l = t and mi < mj

. (10)

Proof. We have

Cov[y(l)
mi

(Z), y(t)
mj

(Z)] =
1

mimj

mi∑
i′=1

mj∑
j′=1

Cov[f (l)(Zi′), f
(t)(Zj′)] , (11)
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where Z1, . . . , Zmk
are random variables that are i.i.d. as the random variable Z. Con-

sider the case l 6= t and mi ≥ mj . The covariance Cov[f (l)(Zi′), f
(t)(Zj′)] with i′ 6= j′

is 0 because the random variables Z1, . . . , Zmk
are independent, and therefore f (l)(Zi′)

and f (t)(Zj′) are independent. This simplifies (11) with mi ≥ mj to

Cov[y(l)
mi

(Z), y(t)
mj

(Z)] =
1

mimj

mj∑
j′=1

Cov[f (l)(Zj′), f
(t)(Zj′)] . (12)

With the definition of the correlation coefficient in (3), the equality (12) becomes

Cov[y(l)
mi

(Z), y(t)
mj

(Z)] =
1

mimj

mj∑
j′=1

ρl,tσlσt =
1

mi
ρl,tσlσt , (13)

which shows the case l 6= t and mi ≥ mj . For the case l = t and mi ≥ mj , note that
ρt,t = ρl,l = 1, which simplifies (13) to

Cov[y(l)
mi

(Z), y(t)
mj

(Z)] =
1

mi
ρl,tσlσt =

1

mi
σ2
l .

We therefore have shown the cases with mi ≥ mj in (10). To reduce the cases with
mi < mj to the shown cases with ≥, exchange mi with mj and l with t and exploit the
symmetry of the covariance.

Lemma 3. The variance Var[ŝ(Z)] of the MFMC estimator ŝ(Z) is

Var[ŝ(Z)] =
σ2

1

m1
+

k∑
i=2

(
1

mi−1
− 1

mi

)(
α2
i σ

2
i − 2αiρ1,iσ1σi

)
. (14)
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Proof. The variance of a sum of random variables is the sum of their covariances

Var[ŝ(Z)] = Var

[
y(1)
m1

(Z) +
k∑
i=2

αi

(
y(i)
mi

(Z)− y(i)
mi−1

(Z)
)]

= Var[y(1)
m1

(Z)] +

k∑
i=2

α2
i

(
Var[y(i)

mi
(Z)] + Var[y(i)

mi−1
(Z)]

)
+ 2

k∑
i=2

αi

(
Cov[y(1)

m1
(Z), y(i)

mi
(Z)]− Cov[y(1)

m1
(Z), y(i)

mi−1
(Z)]

)
+ 2

k∑
i=2

αi

k∑
j=i+1

αj

(
Cov[y(i)

mi
(Z), y(j)

mj
(Z)]− Cov[y(i)

mi
(Z), y(j)

mj−1
(Z)]

)
(15)

− 2
k∑
i=2

αi

k∑
j=i+1

αj

(
Cov[y(i)

mi−1
(Z), y(j)

mj
(Z)]− Cov[y(i)

mi−1
(Z), y(j)

mj−1
(Z)]

)
(16)

− 2

k∑
i=2

α2
i Cov[y(i)

mi
(Z), y(i)

mi−1
(Z)] .

With Lemma 2 and m1 ≤ · · · ≤ mk, it follows that the covariance terms in (15) and (16)
cancel, which then shows the lemma.

We now formulate the optimization problem to select the number of model evaluations
m and the coefficients α2, . . . , αk that minimize the MSE e(ŝ(Z)) of the MFMC estimator
ŝ(Z) with costs c(ŝ(Z)) = p equal to a computational budget p ∈ R+. Since e(ŝ(Z)) =
Var[ŝ(Z)], it is sufficient to minimize the variance Var[ŝ(Z)] of the MFMC estimator, see
Section 3.1 and (9). We formulate the optimization problem with m ∈ Rk, rather than
in Nk, and round down bmic to determine the integer number of model evaluations from
the real number mi for i = 1, . . . , k. We do not expect that the rounding significantly
impacts the MSE of the MFMC estimator. Usually, the number of model evaluations is
� 1 and therefore changing the number of model evaluations by a fraction less than one
is a small change relative to the number of model evaluations. Rounding down ensures
that the costs of the MFMC estimator do not exceed the computational budget p. Let
therefore J : Rk+ × Rk−1 → R be the objective function with

J(m, α2, . . . , αk) =
σ2

1

m1
+

k∑
i=2

(
1

mi−1
− 1

mi

)(
α2
i σ

2
i − 2αiρ1,iσ1σi

)
, (17)

and note that J(m, α2, . . . , αk) = Var[ŝ(Z)] for m ∈ Nk and 0 < m1 ≤ m2 ≤ · · · ≤ mk.
We define the vector m∗ ∈ Rk and the coefficients α∗2, . . . , α

∗
k ∈ Rk to be the solution of
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the optimization problem

arg min
m∈Rk,α2,...,αk∈R

J(m, α2, . . . , αk)

subject to mi−1 −mi ≤ 0 , i = 2, . . . , k ,

−m1 ≤ 0 ,

wTm = p .

(18)

The inequality constraints mi−1 − mi ≤ 0 for i = 2, . . . , k and −m1 ≤ 0 ensure 0 ≤
m1 ≤ · · · ≤ mk. Note that we will show m∗1 > 0 for the optimal m∗1 and therefore
m∗ ∈ Rk+, see Lemma 4. The equality constraint wTm = p ensures that the costs of the
corresponding MFMC estimator equals the computational budget p ∈ R+. Theorem 1
provides the global solution of the optimization problem (18) under a condition on the
costs and the correlation coefficients. Note that in Section 3.5 we present an algorithm to
select from models f (1), . . . , f (k) a subset of models that satisfies the conditions required
by Theorem 1.

Theorem 1. Let f (1), . . . , f (k) be k models with ordering

|ρ1,1| > · · · > |ρ1,k| (19)

and with costs w1, . . . , wk that satisfy the ratios

wi−1

wi
>
ρ2

1,i−1 − ρ2
1,i

ρ2
1,i − ρ2

1,i+1

, (20)

for i = 2, . . . , k. Set the coefficients α∗2, . . . , α
∗
k to

α∗i =
ρ1,iσ1

σi
, (21)

for i = 2, . . . , k and the components of r∗ = [r∗1, . . . , r
∗
k]
T ∈ Rk+ to

r∗i =

√
w1(ρ2

1,i − ρ2
1,i+1)

wi(1− ρ2
1,2)

, (22)

for i = 1, . . . , k. Set further the components of m∗ = [m∗1, . . . ,m
∗
k]
T ∈ Rk+ to m∗i = m∗1r

∗
i

for i = 2, . . . , k and

m∗1 =
p

wTr∗
, (23)

where p ∈ R+ is the computational budget. The global minimum of (18) is (m∗, α∗2, . . . , α
∗
k).

Proof. First note that (m∗, α∗2, . . . , α
∗
k) satisfies the constraints of the optimization prob-

lem (18) because of the ordering (19) and condition (20). Consider a local minimum
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(m, α2, . . . , αk) of (18) for which an i ∈ {2, . . . , k} exists with mi−1 = mi. Define
l = [l1, . . . , lq]

T ∈ Nq with q ∈ N such that

mli−1 < mli , i = 1, . . . , q ,

and
mli = mli+1 = · · · = mli+1−1 , i = 0, . . . , q ,

where l0 = 1 and lq+1 = k + 1. Lemma 4 in Appendix A shows that we have

rli =
mli

m1
=

√√√√ (
∑l1−1

j=1 wj)

(
∑li+1−1

j=li
wj)

(ρ2
1,li
− ρ2

1,li+1
)

(1− ρ2
1,l1

)
, (24)

for i = 0, . . . , q. Lemma 6 in Appendix A shows that condition (20) on the ratios of the
costs and the differences of the squared correlation coefficients leads to

k∑
i=1

√
wi(ρ2

1,i − ρ2
1,i+1) <

q∑
i=0

√√√√√
li+1−1∑

j=li

wj

 (ρ2
1,li
− ρ2

1,li+1
) ,

from which we obtain√
1− ρ2

1,2

w1

k∑
i=1

wi

√
w1

wi

(ρ2
1,i − ρ2

1,i+1)

(1− ρ2
1,2)︸ ︷︷ ︸

r∗i

<

√√√√ 1− ρ2
1,l1∑l1−1

t=1 wt

q∑
i=0

li+1−1∑
j=li

wj

√√√√ (
∑l1−1

t=1 wt)

(
∑li+1−1

t=li
wt)

(ρ2
1,li
− ρ2

1,li+1
)

(1− ρ2
1,l1

)︸ ︷︷ ︸
rli

, (25)

where we used r∗1, . . . , r
∗
k as defined in (22) and rl0 , . . . , rlq as in (24). Lemma 4 shows

m∗1 = p/(wTr∗) and m1 = p/(wTr) and therefore (25) is equivalent to√
(1− ρ2

1,2)p2

(m∗1)2w1
<

√√√√ (1− ρ2
1,l1

)p2

m2
1

∑l1−1
i=1 wi

.

Squaring both sides and dividing by p leads to

σ2
1(1− ρ2

1,2)p

(m∗1)2w1
<
σ2

1(1− ρ2
1,l1

)p

m2
1

∑l1−1
i=1 wi

. (26)

Lemma 5 in Appendix A shows that the left-hand side of (26) is the objective function J
evaluated atm∗ and α∗2, . . . , α

∗
k, and the right-hand side J evaluated atm and α2, . . . , αk.

The inequality (26) therefore shows that the value of the objective function at m∗ and

11



α∗2, . . . , α
∗
k is smaller than at a local minimum with m and α2, . . . , αk where there exists

an i ∈ {2, . . . , k} with mi−1 = mi.
Lemma 4 shows that only (m∗, α∗2, . . . , α

∗
k) can be a local minimum with m∗1 < m∗2 <

· · · < m∗k (strict inequalities) and therefore (m∗, α∗2, . . . , α
∗
k) is the unique global mini-

mum of (18) given ordering (19) and condition (20).

We round down the components of m∗ = [m∗1, . . . ,m
∗
k]
T ∈ Rk+ to obtain an in-

teger number of model evaluations and denote the MFMC estimator with bm∗c =
[bm∗1c, . . . , bm∗kc]T ∈ Nk and the coefficients α∗2, . . . , α

∗
k ∈ R as ŝ∗(Z), see above for a

discussion on the rounding. In the problem setup, the budget p should be large enough
to evaluate the high-fidelity model at least once, otherwise the multifidelity estimator
is biased. For the ease of exposition, we treat the components of m∗ as integers in the
following, because the rounding introduces only constant factors in the discussion.

3.3. Discussion

Let ŝ∗(Z) be the MFMC estimator with computational budget p ∈ R+. The costs

c(y
(1)
n (Z)) = p of the Monte Carlo estimator y

(1)
n (Z) with n = p/w1 model evaluations

are equal to the costs of the MFMC estimator ŝ∗(Z) with computational budget p.
Corollary 1 derives the condition under which it is computationally cheaper to estimate

s with the MFMC estimator ŝ∗(Z) than with the Monte Carlo estimator y
(1)
n (Z).

Corollary 1. The MSE e(ŝ∗(Z)) of the MFMC estimator ŝ∗(Z) for a given computa-
tional budget p ∈ R+ is

e(ŝ∗(Z)) =
σ2

1(1− ρ2
1,2)

(m∗1)2w1
p . (27)

The MSE e(ŝ∗(Z)) of the MFMC estimator ŝ∗(Z) is smaller than the MSE of the Monte

Carlo estimator y
(1)
n (Z) with n = p/w1 evaluations of f (1), and thus costs c(y

(1)
n (Z)) = p,

if and only if
k∑
i=1

√
wi
w1

(ρ2
1,i − ρ2

1,i+1) < 1 . (28)

Proof. Lemma 5 shows that the MSE e(ŝ∗(Z)) of the MFMC estimator ŝ∗(Z) is (27),
because the objective J equals Var[ŝ∗(Z)] if the components of m∗ are integers. The

MSE of the Monte Carlo estimator y
(1)
n (Z) is

e(y(1)
n (Z)) =

σ2
1

n
=
σ2

1

p
w1 . (29)

To show the condition (28), we rewrite the MSE (27) of the MFMC estimator as

e(ŝ∗(Z)) =
σ2

1(1− ρ2
1,2)

pw1

(
k∑
i=1

wir
∗
i

)2

,

12



where we used m∗1 = p/(wTr), see Theorem 1. We obtain with the definition of r∗ in
Theorem 1

e(ŝ∗(Z)) =
σ2

1

p

(
k∑
i=1

√
wi(ρ2

1,i − ρ2
1,i+1)

)2

. (30)

We therefore derive from the MSE (29) of the Monte Carlo estimator and the MSE (30)

of the MFMC estimator that e(ŝ∗(Z)) < e(y
(1)
n (Z)) if and only if

w1 >

(
k∑
i=1

√
wi(ρ2

1,i − ρ2
1,i+1)

)2

,

which is equivalent to (28).

Note that only the number of model evaluations m∗1 of the high-fidelity model f (1)

appears in the definition of the MSE e(ŝ∗(Z)), but that m∗1 depends through r∗ on
m∗2, . . . ,m

∗
k, see the definition of m∗1 in (23).

Consider the condition (28) that is sufficient and necessary for the MFMC estimator
to achieve a variance reduction compared to the Monte Carlo estimator with the same

computational budget. With the MSE e(y
(1)
n (Z)) of the Monte Carlo estimator as derived

in (29) and the MSE e(ŝ∗(Z)) of the MFMC estimator as derived in (30) we obtain the
ratio

γ ≡ e(ŝ∗(Z))

e(y
(1)
n (Z))

=

(
k∑
i=1

√
wi
w1

(ρ2
1,i − ρ2

1,i+1)

)2

. (31)

The ratio (31) quantifies the variance reduction achieved by the MFMC estimator. The
ratio is in inverse proportion to the variance reduction and therefore the variance of
the MFMC estimator is small if the costs w1, . . . , wk and the correlation coefficients
ρ1,1, . . . , ρ1,k of the models f (1), . . . , f (k) lead to small terms in the sum in (31). Consider
a single term i ∈ {1, . . . , k} in the sum in (31)√

wi
w1

(ρ2
1,i − ρ2

1,i+1) .

The term shows that the contribution of the model f (i) to the variance reduction is high
if the costs wi are low and the difference of the squared correlation coefficients ρ2

1,i−ρ2
1,i+1

is low. Thus, the contribution of a model is high if the squared correlation coefficient
ρ2

1,i of model f (i) is similar to the squared correlation coefficient ρ2
1,i+1 of the subsequent

model f (i+1). This shows that the contribution of a model cannot be determined by only
considering the properties of the model itself, but requires taking the properties of other
models used in the MFMC estimator into account. Furthermore, the condition (28) that
the MFMC estimator is computationally cheaper than the Monte Carlo estimator is not
a condition on the properties of each model separately, but rather a condition on the
properties of all models f (1), . . . , f (k) together, i.e., on the collective whole of the models.

Corollary 1 and the discussion on the variance reduction and the ratio (31) of the MSEs
show that the correlation ρ1,i between a random variable f (i)(Z) induced by the surrogate
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model f (i) for i = 2, . . . , k and the random variable f (1)(Z) corresponding to the high-
fidelity model replaces the classical, deterministic pointwise error (1) that is usually
considered to quantify the approximation quality of surrogate models in deterministic
settings [39, 23, 24].

3.4. Illustrative example

Let us consider an example with k = 3 models f (1), f (2), f (3) to demonstrate the behav-
ior of the MFMC estimator and the interactions among the models. We consider the
variance reduction ratio (31) as a function of the correlation coefficients ρ1,2, ρ1,3 and
the costs w1, w2, w3

γ(ρ1,2, ρ1,3, w1, w2, w3) =

(√
1− ρ2

1,2 +

√
w2

w1
(ρ2

1,2 − ρ2
1,3) +

√
w3

w1
ρ2

1,3

)2

. (32)

Note that a lower value γ(ρ1,2, ρ1,3, w1, w2, w3) means a higher variance reduction. For
illustration, we set w1/w2 = 0.1 and vary the correlation coefficients ρ1,2, ρ1,3 and the
costs ratio w3/w1. Figure 1a shows the contour plot of γ for ρ1,2 = 0.9, ρ1,3 ∈ [0.1, 0.9],
and costs w3/w1 ∈ [10−5, 10−1]. The black region indicates where condition (20) is
violated. The contours show that a model f (3) with a high correlation coefficient ρ1,3

leads to a low value of γ and therefore to a high variance reduction; however, the contours
become almost vertical for low cost ratios w3/w1, which means that further decreasing
the costs w3 of model f (3) hardly improves the variance reduction if w3 is already low.
This can also be seen in (32), where changing the costs w3 affects the third term only.
Thus, if w3/w1 is already low, the second term in γ dominates the variance reduction,
which is independent of the costs w3. In Figure 1b, the correlation coefficient of model
f (2) is reduced to ρ1,2 = 0.6. The gray region shows where γ evaluates to values larger
than 1, and therefore where the MFMC estimator has a higher variance than the standard
Monte Carlo estimator. Figure 1b shows that a high correlation coefficient ρ1,3 can
violate condition (20). Consider now Figure 1c, where we further reduce the correlation
coefficient of the second model f (2) to ρ1,2 = 0.4. The plot shows that combining
f (1), f (2), and a third model f (3) with w3/w1 ∈ [10−5, 10−1] and ρ1,3 ∈ [0.1, 0.4] into
an MFMC estimator either violates condition (20) (black region) or leads to a higher
variance than the Monte Carlo estimator (gray region). In this situation, it is therefore
necessary to change or remove f (2) to obtain an MFMC estimator with a lower variance
than the Monte Carlo estimator; see the following section for an approach to handle
such a situation.

3.5. Model selection

Theorem 1 is applicable to models that are ordered descending with respect to the
squared correlation coefficients (19) and that satisfy condition (20) on the ratios of the
costs and correlation coefficients. Even if the given models f (1), . . . , f (k) violate the
ordering (19) or condition (20), there exists a selection of the models f (1), . . . , f (k) that
can be ordered as in (19) and that satisfy condition (20), and thus for which an MFMC
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Figure 1: The plots show the contours of the variance reduction ratio (31) of an MFMC
estimator with three models f (1), f (2), f (3). The black region shows where
condition (20) is violated and the gray region where the MFMC estimator leads
to a higher variance than the Monte Carlo estimator. The plots confirm that
the variance reduction of the MFMC estimator is determined by the properties
of the collective whole of the models, and not by the properties of each model
separately.

estimator can be derived. There may even be multiple feasible selections of models for
which an MFMC estimator can be constructed, in which case the selection that leads to
the MFMC estimator with the lowest variance (i.e., lowest MSE) is of interest.

Given k models f (1), . . . , f (k), Algorithm 1 iterates over all subsetsM⊆ {f (1), . . . , f (k)}
and selects the subset M∗ that leads to the MFMC estimator with the lowest variance.
Inputs to Algorithm 1 are the models f (1), . . . , f (k), the variance σ2

1 of the high-fidelity
model f (1), the correlation coefficients ρ1,1, . . . , ρ1,k, and the costs w1, . . . , wk. Algo-
rithm 1 first orders the models with respect to the squared correlation coefficients. It
then initializes the set M∗ = {f (1)} with the set {f (1)} that contains the high-fidelity
model only. The variance of the estimator with computational budget p = w1 that uses
the high-fidelity model only (i.e., the Monte Carlo estimator) is v∗ = σ2

1, see the proof of
Corollary 1 and (29). The algorithm then iterates over all subsets M⊆ {f (1), . . . , f (k)}
of which the high-fidelity model f (1) is an element and which satisfy condition (20). If
the variance v of the MFMC estimator with budget p and with models in the current
subsetM is lower than the variance v∗, then the current subsetM is stored inM∗ and
the variance v∗ = v is set to v. The set M∗ is returned after iterating over all subsets.
Note thatM∗ cannot be empty because the setM∗ is initialized with {f (1)}, which sat-
isfies condition (20). Note further that a different choice of the computational budget p
leads to the same setM∗ because the variance of the MFMC estimator depends linearly
on p.

Algorithm 1 does not treat the case where there exists 1 ≤ i < j ≤ k with ρ2
1,i = ρ2

1,j .

In such a situation, Algorithm 1 is run for the set of models {f (1), . . . , f (k)} \ {f (j)}
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Algorithm 1 Model selection

1: procedure mSelect(f (1), . . . , f (k), σ1, ρ1,1, . . . , ρ1,k, w1, . . . , wk)
2: Ensure ρ2

1,1 > ρ2
1,2 > · · · > ρ2

1,k, reorder if necessary
3: Set the computational budget to p = w1

4: Initialize M∗ = {f (1)} and v∗ =
σ2
1
p w1

5: forM⊆ {f (1), . . . , f (k)} do
6: if f (1) 6∈ M then continue
7: end if
8: Set k′ = |M| to the number of elements in M
9: Let i1, . . . , ik′ be the indices of the models in M s.t. ρ2

1,i1
> · · · > ρ2

1,ik′
10: Set ρ1,ik′+1

= 0
11: if condition (20) is violated for models in M then continue
12: end if
13: Compute

v =
σ2

1

p

 k′∑
j=1

√
wj(ρ2

1,ij
− ρ2

1,ij+1
)

2

14: if v < v∗ then
15: M∗ =M
16: v∗ = v
17: end if
18: end for
19: returnM∗, v∗
20: end procedure

to obtain M∗1 and v∗1, and for the set {f (1), . . . , f (k)} \ {f (i)} to obtain M∗2 and v∗2. If
v∗1 < v∗2 then M∗ =M∗1 and else M∗ =M∗2.

The computational costs of Algorithm 1 grow exponentially in the number of models
k and are bounded by O(2k). Note that in many situations fewer than k = 10 models
are available and therefore the exhaustive search performed by Algorithm 1 is usually
computationally feasible and often negligible compared to the computational costs of
evaluating models.

3.6. Practical considerations and computational procedure

The optimal vector m∗ and the optimal coefficients α∗2, . . . , α
∗
k derived in Theorem 1

depend on the variance and the correlation coefficients corresponding to the high-fidelity
and the surrogate models. These quantities are usually unavailable and in practice and
therefore we replace them by their sample estimates. To estimate these quantities, we
draw m′ ∈ N i.i.d. realizations z′1, . . . ,z

′
m′ ∈ D of the random variable Z and derive the
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Algorithm 2 Multifidelity Monte Carlo

1: procedure MFMC(f (1), . . . , f (k), σ̄1, . . . , σ̄k, ρ̄1,1, . . . , ρ̄1,k, w1, . . . , wk, p)
2: Ensure f (1), . . . , f (k) is the result of mSelect defined in Algorithm 1
3: Set ρ̄1,k+1 = 0 and define vector r̄ = [r̄1, . . . , r̄k]

T ∈ Rk+ as

ri =

√
w1(ρ̄2

1,i − ρ̄2
1,i+1)

wi(1− ρ̄2
1,2)

, i = 1, . . . , k

4: Select number of model evaluations m ∈ Rk+ as

m =
[ p

wT r̄
, r̄2m1, . . . , r̄km1

]T
∈ Rk+

5: Round down components of m to obtain integers
6: Set coefficients α = [α1, . . . , αk]

T ∈ Rk to

αi =
ρ̄1,iσ̄1

σ̄i
, i = 1, . . . , k

7: Draw z1, . . . ,zmk
∈ D realizations of Z

8: Evaluate model f (i) at realizations z1, . . . ,zmi for i = 1, . . . , k
9: Compute MFMC estimate ŝ as in (7)

10: return ŝ
11: end procedure

Monte Carlo estimates y
(i)
m′ of E[f (i)(Z)] for i = 1, . . . , k. The sample variance is then

σ̄2
i =

1

m′ − 1

m′∑
l=1

(
f (i)(z′l)− y

(i)
m′

)
(33)

and the sample correlation

ρ̄1,i =
1

σ̄iσ̄j

m′∑
l=1

(
f (i)(z′l)− σ̄i

)(
f (j)(z′l)− σ̄j

)
(34)

for i = 1, . . . , k. While evaluating the models to obtain the sample variances and sample
correlations, we measure the time needed for the model evaluations and derive the costs
w1, . . . , wk ∈ R+.

Algorithm 2 summarizes the computational procedure for deriving an MFMC estimate.
Inputs to Algorithm 2 are the models f (1), . . . , f (k), the sample variances σ̄1, . . . , σ̄k, the
sample correlations ρ̄1,1, . . . , ρ̄1,k, the costs w1, . . . , wk, and the computational budget
p ∈ R+. Algorithm 2 first ensures that the models are in the order derived in Theorem 1
and satisfy condition (20), and calls Algorithm 1 if necessary. The vector m and the
coefficients α are derived from the sample estimates of the variances and the correlation
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coefficients. Note that the variances and the correlation coefficients are replaced by
their sample estimates and thus the obtained vector m and the coefficients α are in
general not the optimal vector m∗ and optimal coefficients α∗ as derived in Theorem 1.
Algorithm 2 then draws mk realizations z1, . . . ,zmk

∈ D of the random variable Z and
derives the MFMC estimate ŝ as in (7), which is then returned. The costs of Algorithm 2
are usually dominated by the costs wTm of the model evaluations.

4. Numerical experiments

This section demonstrates the MFMC method on two numerical examples. Section 4.1
considers a locally damaged plate and estimates the mean deflection for uncertain prop-
erties of the plate. Section 4.2 presents a tubular reactor model that leads to either a
steady-state or an oscillatory solution depending on the inputs. We estimate with our
MFMC method the expected amplitude of the oscillation for uncertain inputs.

The reported runtime measurements were obtained on compute nodes with Intel Xeon
E5-1620 CPUs and 32GB RAM using a MATLAB implementation.

4.1. Locally damaged plate in bending

Consider the model of a clamped plate in bending [20] with a local damage [36, 35]. The
spatial domain is Ω = [0, 1]2 ⊂ R2 and the inputs z = [z1, . . . , z4] are realizations of the
random variable Z with a uniform distribution in the input domain

D = [0.05, 0.1]× [1, 100]× [0.02]× (0, 0.05] ⊂ R4 .

The first input z1 controls the nominal thickness of the plate, the second input z2 the
load, and the third and fourth inputs z3, z4 the damage. The damage is a local decrease
of the thickness. We define the thickness at position x ∈ Ω and input z ∈ D as the
function t : Ω×D → R with

t(x; z) = z1

(
1− z3 exp

(
− 1

2z2
4

‖x− x∗‖22
))

,

where z1 is the nominal thickness, z3, z4 are the inputs that control the damage, and
x∗ = [0.7, 0.4]T ∈ Ω is the position of the damage. Figure 2 shows the plate without
damage, i.e., z3 = 0 and with a 20% decrease of the thickness, i.e., z3 = 0.2. The output
y ∈ Y ⊂ R of the model is the mean deflection of the plate.

The high-fidelity model f (1) : D → Y of the plate problem is derived with the finite
element method as described in [36, 20]. The discretized system of equations is nonlinear
in the inputs. The high-fidelity model has 279 degrees of freedom. We are interested in
the expected mean deflection E[f (1)(Z)].

We create five different surrogate models as follows. We evaluate the high-fidelity
model f (1) at 1000 realizations of the random variable Z and derive a proper orthogonal
decomposition (POD) basis of the corresponding solutions. A reduced model f (2) with
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Figure 2: Plate problem: A local damage at x∗ = [0.7, 0.4]T ∈ Ω leads to a larger
deflection of the plate.

10 degrees of freedom is derived via Galerkin projection of the discretized system of equa-
tions of the high-fidelity model onto the ten-dimensional POD space. Similarly, we define
f (4) and f (5) to be reduced models of f (1) with two and five POD basis vectors, respec-
tively. We further derive a data-fit surrogate model f (3) with linear interpolation, using
the dataset z1, . . . ,z256 ∈ D, which are the inputs corresponding to the grid in D with
four equidistantly distributed points in each dimension, and f (1)(z1), . . . , f (1)(z256) ∈ Y,
which are the corresponding outputs of the high-fidelity model f (1). The surrogate model
f (3) : D → Y is the linear interpolant that satisfies f (3)(zi) = f (1)(zi) , i = 1, . . . , 256 .
We also derive a regression-based surrogate model f (6) : D → Y with support vector ma-
chines (SVMs) [16] from 256 realizations of Z and the corresponding high-fidelity model
outputs. We use the libsvm implementation [11] with ε-SVM (option ‘-s 3’) and radial
basis functions (option ‘-t 2’). We perform a 5-fold cross validation to select the kernel
bandwidth and the costs parameters. The ε in the cost function is set to ε = 10−2. Over-
all, we have the high-fidelity model f (1), the reduced models f (2), f (4), f (5), the data-fit
surrogate model f (3), and the SVM model f (6).

Let y
(1)
n be the Monte Carlo estimate of E[f (1)(Z)] with n = 105 samples. The sample

variances and the sample correlation coefficients for the models f (1), . . . , f (6) are com-
puted from 100 realizations of Z, see Table 1a. We estimate the MSE of an estimator
s̄(Z) over ten runs as

ê =
1

10

10∑
i=1

(
y(1)
n − s̄i

)2
, (35)

where each of the estimates s̄1, . . . , s̄10 is derived from independent samples. In case of
the MFMC estimator s̄(Z) = ŝ(Z), Algorithm 2 is run ten times to obtain the estimates
ŝ1, . . . , ŝ10.

Figure 3 reports the estimated MSE (35) of the Monte Carlo estimators that use
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costs corr. coefficient

f (1) 4.0894× 10−1 1.00000000× 100

f (2) 4.9890× 10−3 9.99999983× 10−1

f (4) 1.3264× 10−3 9.99999216× 10−1

f (5) 2.9550× 10−4 9.99954506× 10−1

f (3) 2.2260× 10−5 9.98971009× 10−1

f (6) 1.5048× 10−6 9.97555261× 10−1

costs corr. coefficient

f (1) 4.4395× 101 1.000000× 100

f (2) 6.8409× 10−1 9.999882× 10−1

f (3) 2.9937× 10−1 9.999743× 10−1

f (4) 1.9908× 10−4 9.958253× 10−1

(a) plate problem (b) tubular reactor problem

Table 1: The tables summarize the costs and the correlation coefficients of the models
used in the plate problem in Section 4.1 and in the tubular reactor problem in
Section 4.2
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Figure 3: Plate model: The MFMC estimator combines the high-fidelity model f (1), the
reduced model f (2), and the data-fit model f (3) to estimate the expectation of
the deflection of the damaged plate. The runtime to derive an MFMC estimate
is four orders of magnitude lower than the runtime to obtain the Monte Carlo
estimate of comparable accuracy that uses the high-fidelity only. Furthermore,
the runtime of the MFMC estimator is two orders of magnitude lower than
using the Monte Carlo method with the reduced model f (2).
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Figure 4: Plate model: The plot in (a) shows the variance of the MFMC estimator
with two (high-fidelity f (1), reduced f (2)), three (high-fidelity f (1), reduced
f (2), data-fit f (3)), and all six models f (1), . . . , f (6) (high-fidelity f (1), reduced
f (2), f (4), f (5), data-fit f (3), and SVM f (6)). Compared to the Monte Carlo
method with the high-fidelity model only, a variance reduction of about four
orders of magnitude is achieved. This is similar to the speedup obtained with
the MFMC estimator shown in (b).

the high-fidelity model f (1), the reduced model f (2), and the data-fit surrogate model
f (3). The Monte Carlo estimators that use the reduced model f (2) and the data-fit
surrogate model f (3) are biased estimators of expectation E[f (1)(Z)], which can be seen
in Figure 3 in the case of the data-fit surrogate model. Figure 3 compares the estimated
MSEs of the Monte Carlo estimators to the estimated MSE of the MFMC estimator that
combines the high-fidelity f (1), the reduced f (2), and the data-fit surrogate model f (3).
The MFMC estimator achieves a speedup of up to four orders of magnitude compared
to the Monte Carlo estimator that uses the high-fidelity model only, and a speedup of
up to two orders of magnitude compared to using the reduced model only. The results
confirm that the MFMC estimator is an unbiased estimator of E[f (1)(Z)]. The MFMC
estimator evaluates the data-fit surrogate model, but, in contrast to the Monte Carlo
estimator that uses the data-fit surrogate model only, the MFMC estimator balances the
model evaluations across all three models such that the low approximation quality of the
data-fit surrogate model is compensated and its low computational costs are leveraged.

Figure 4a shows that even though the data-fit surrogate model is a poor approximation
of the high-fidelity model, the variance of the MFMC estimator is significantly reduced
if the data-fit surrogate model is combined with the high-fidelity and the reduced model.
This is in agreement with the discussion in Section 3.3, which states that the contribution
of a surrogate model to the MFMC estimator depends on the properties of the model but
also how it relates to the models already present in the MFMC estimator. Figure 4a also
shows that the variance of the MFMC estimator that uses all six models f (1), . . . , f (6)—
the high-fidelity model, three reduced models, the data-fit model, and the SVM model—
is only slightly lower than the variance of the MFMC estimator that uses the three
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Figure 5: Plate model: The plot reports how Algorithm 2 distributes the total number
of samples across the high-fidelity, the reduced, the data-fit, and the SVM
models for the MFMC estimator with two, three, and six models. Note the
logarithmic scale on the y-axis.

models f (1), f (2), f (3). This again confirms that the contribution of a surrogate models
to the variance reduction depends on how the surrogate model complements the models
already present in the MFMC estimator. Note that the variance Var[ŝ] of the MFMC
estimator can be estimated without model evaluations from the sample variances and
the sample correlation coefficients with (14), and thus it is a computationally efficient
guide for adding surrogate models to the MFMC estimator. The estimated MSE shown
in Figure 4b confirms the variance reduction results in Figure 4a.

Figure 5 reports the relative share of each model in the total number of model eval-
uations, i.e., in the total number of samples. The shares of the models vary by orders
of magnitude between the high-fidelity, the reduced, the data-fit, and the SVM models,
reflecting their correlations and costs. Note that the relative shares of the models are
independent of the computational budget p, because all components of m∗ scale linearly
with p, see Theorem 1.

4.2. Limit cycle oscillation in tubular reactor

Consider a one-dimensional non-adiabatic tubular reactor with a single reaction and
axial mixing as introduced in [26]. The spatial domain is Ω = [0, 1] ⊂ R, the time
domain is [0, T ] ⊂ R with T = 500s, and the input domain is D = [0.16, 0.17] ⊂ R. The
governing equations are coupled nonlinear time-dependent convection-diffusion-reaction
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Figure 6: Tubular reactor: If the input z < z∗ is below the critical parameter z∗ ∈ D,
the temperature and the concentration of the tubular reactor converge to a
steady state as shown in (a) for the temperature at 1 ∈ Ω. If z > z∗, the
tubular reactor enters an LCO as plotted in (b).

equations

∂

∂t
uc(x, t; z) =

1

Pe

∂2

∂x2
uc(x, t; z)− ∂

∂x
uθ(x, t; z)− zg(uc, uθ)

∂

∂t
uθ(x, t; z) =

1

Pe

∂2

∂x2
uθ(x, t; z)− ∂

∂x
uθ(x, t; z)− β(uθ(x, t; z)− θ0) + εzg(uc, uθ) ,

with the concentration uc : Ω× [0, T ]×D → R, the temperature uθ : Ω× [0, T ]×D → R,
and

g(uc, uθ) = uc exp
(
γ − γ

uθ

)
.

The nonlinear function g models an Arrhenius-type nonlinear reaction term. The Péclet
number is Pe = 5 and γ = 25, β = 2.5, ε = 0.5 and θ0 = 1 are known constants. We
impose Robin boundary conditions at x = 0, Neumann boundary conditions at x = 1,
and the initial condition as in [26].

The input z ∈ D is the Damköhler number. The Damköhler number controls the
behavior of the reactor. If z < 0.165, the concentration and the temperature of the
reactor converge to a steady-state solution as shown in Figure 6a. If z > 0.165, the
reactor enters a limit cycle oscillation (LCO) around a non-trivial equilibrium position
as shown in Figure 6b. These two regimes are represented in the bifurcation diagram in
Figure 7a. The LCO amplitude is the amplitude of the oscillation of the temperature
at x = 1. Figure 7b shows the LCO amplitude for inputs in D, where for z < 0.165 the
reactor converges to a steady-state solution and therefore the LCO amplitude is zero.
We define the LCO amplitude as the output of the tubular reactor model.

The high-fidelity model f (1) is derived as in [47] and is based on a finite difference
discretization of the governing equations on a grid with 101 equidistant grid points in
the spatial domain Ω. The high-fidelity model has 198 degrees of freedom. The model is
marched forward in time with an explicit fourth-order Runge-Kutta method with time
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Damköhler number

temperature
equilibrium pos

0

0.01

0.02

0.03

0.04

0.05

0.06

0.16 0.162 0.164 0.166 0.168 0.17

L
C
O

am
p
lit
u
d
e
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Figure 7: Tubular reactor: The bifurcation diagram in (a) visualizes the two regimes
of the tubular reactor. The LCO amplitude as shown in (b) is the difference
between the temperature and the equilibrium position.

step size 10−4s. The time stepping is stopped either if the solution converged to a steady
state or an LCO is detected. In order to derive two reduced models, we evaluate the high-
fidelity model at 20 inputs z1, . . . , z20 ∈ D that coincide with an equidistant grid in D.
The concentration and temperature at the grid points in the spatial domain are stored
every 0.25s. A reduced basis is constructed with POD from the stored concentration
and temperature. The reduced model f (2) is derived with Galerkin projection of the
discretized equations of the high-fidelity model onto the reduced space spanned by the
first ten POD basis vectors. The nonlinear function g is evaluated explicitly—i.e., in
each time step, the intermediate reduced solution is projected onto the high-dimensional
solution space of the high-fidelity model, the function g is evaluated, and the result is
projected back onto the ten-dimensional POD space. The reduced model f (3) is derived
as f (2) except that the nonlinear function g is approximated by the discrete empirical
interpolation method (DEIM) [12] as described in [47]. The number of DEIM basis
vectors and the number of DEIM interpolation points is eight. We additionally construct
a data-fit surrogate model f (4) with cubic interpolation from the inputs coinciding with
the ten equidistant grid points in D and the corresponding outputs. We therefore have
four models, the high-fidelity model f (1), two reduced models f (2), f (3), and the data-fit
surrogate model f (4).

We are interested in the expectation of the LCO amplitude E[f (1)(Z)] if the Damköhler
number is uncertain and a realization of the random variable Z with a normal distri-
bution with mean 0.167 and standard deviation 0.03. The Monte Carlo estimate y

(1)
n

of E[f (1)(Z)] is computed from n = 103 realizations of Z and is used to estimate the
MSE as in (35). The estimated MSE is computed as in (35) over ten runs. The sample
variances and sample correlation coefficients are derived from 100 realizations of Z, see
Table 1b.

Figure 8a shows the variance of the MFMC estimators using up to four models. The
variance is computed with the sample variances and sample correlation coefficients. Com-
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Figure 8: Tubular reactor: The plot in (a) compares the variance of the Monte Carlo
estimator with the high-fidelity model f (1) (one model) to the MFMC estimator
that uses the high-fidelity model f (1) and the reduced model f (2) (two models)
and shows the reduction that is achieved when the data-fit model f (4) is added
(three models), and when the reduced model f (3) is added (four models). The
MFMC estimator achieves an up to four orders of magnitude higher accuracy
than the Monte Carlo estimator, see (b).

bining the high-fidelity model f (1) with the reduced model f (2) that explicitly evaluates
the nonlinear function g and the data-fit surrogate model f (4) leads to a variance reduc-
tion of about four orders of magnitude. Adding the reduced model f (3) that approxi-
mates the nonlinear function with DEIM improves the variance only slightly. Note that
a similar situation was observed in Section 4.1 and Figure 4a. The variance reduction
is reflected in Figure 8b, where the estimated MSE of the MFMC estimator with the
high-fidelity f (1), the reduced f (2), and the data-fit surrogate model f (4) achieves an
improvement of about four orders of magnitude compared to the Monte Carlo estimator
that uses the high-fidelity model only.

5. Conclusions

The proposed MFMC method leverages computationally cheap surrogate models to re-
duce the runtime of estimating statistics of expensive high-fidelity models while main-
taining unbiasedness of the resulting estimator. An optimization problem with an an-
alytic solution optimally balances the model evaluations across the high-fidelity model
and an arbitrary number of surrogate models of any type, including projection-based re-
duced models, data-fit surrogate models, support vector machines, and simplified models.
The MFMC estimator achieved runtime speedups by several orders of magnitude in the
presented numerical examples compared to the Monte Carlo estimator that uses the
high-fidelity model only.

The benefit of adding a surrogate model to the models available to the MFMC es-
timator depends on the properties of the surrogate model itself and also on the new
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information introduced by the surrogate model compared to information provided by
the other models already present in the MFMC estimator. The mathematical and nu-
merical results show that combining surrogate models of different type, approximation
quality, and costs is often more beneficial than combining accurate surrogate models
only. The MFMC estimator is unbiased, independent of the availability of a priori error
bounds and a posteriori error estimators for the surrogate models.
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A. Auxiliary lemmas

Lemma 4. Consider the same setting as in Theorem 1. Let (m, α2, . . . , αk) be a
local minimum of (18) with budget p ∈ R+. Define α1 = 1 and αk+1 = 0. Let
l = [l1, . . . , lq]

T ∈ Nq be the vector with the components l1, . . . , lq ∈ {2, . . . , k} that
are the q ∈ N indices with

mli−1 < mli , i = 1, . . . , q , (36)

and
mli = mli+1 = · · · = mli+1−1 , i = 0, . . . , q ,

and l0 = 1 and lq+1 = k + 1. Define r = [r1, . . . , rk]
T ∈ Rk+ with the components

ri = mi/m1 with i = 1, . . . , k. Then, the local minimum (m, α2, . . . , αk) leads to

rli =
mli

m1
=

√√√√ (
∑l1−1

j=1 wj)

(
∑li+1−1

j=li
wj)

(ρ2
1,li
− ρ2

1,li+1
)

(1− ρ2
1,l1

)
, (37)

with i = 0, . . . , q and m1 > 0. The q coefficients αl1 , . . . , αlq are

αli =
ρ1,liσ1

σli
, (38)

for i = 1, . . . , q and

m1 =
p

wTr
. (39)
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Proof. A vector l ∈ Nq exists and is unique because of the strict inequality in (36). If
m1 = · · · = mk then q = 0. Consider now the Lagrangian

Ĵ(m, α2, . . . , αk, λ, ξ, µ2, . . . , µk) = J(m, α2, . . . , αk)+λ(wTm−p)−ξm1+

k∑
i=2

µi(mi−1−mi) ,

(40)
of the optimization problem (18) with the Lagrange multipliers λ, ξ, µ2, . . . , µk ∈ R. The
partial derivatives of J with respect to m are


∂Ĵ
∂m1

...
∂Ĵ
∂mk

 =



− 1
m2

1
σ2

1 − 1
m2

1
(α2

2σ
2
2 − 2α2ρ1,2σ1σ2) + λw1 + µ2 − ξ

1
m2

2
(α2

2σ
2
2 − 2α2ρ1,2σ1σ2)− 1

m2
2
(α2

3σ
2
3 − 2α3ρ1,3σ1σ3) + λw2 − µ2 + µ3

1
m2

3
(α2

3σ
2
3 − 2α3ρ1,3σ1σ3)− 1

m2
3
(α2

4σ
2
4 − 2α4ρ1,4σ1σ4) + λw3 − µ3 + µ4

1
m2

4
(α2

4σ
2
4 − 2α4ρ1,4σ1σ4)− 1

m2
4
(α2

5σ
2
5 − 2α5ρ1,5σ1σ5) + λw4 − µ4 + µ5

...
1
m2

k
(α2

kσ
2
k − 2αkρ1,kσ1σk) + λwk − µk


,

(41)
and with respect to α2, . . . , αk

∂Ĵ
∂α2
...
∂Ĵ
∂αk

 =


(

1
m1
− 1

m2

) (
2α2σ

2
2 − 2ρ1,2σ1σ2

)
...(

1
mk−1

− 1
mk

) (
2αkσ

2
k − 2ρ1,kσ1σk

)
 . (42)

Since (m, α2, . . . , αk) is a local minimum of (18) and since the constraints are affine func-
tions in m and α2, . . . , αk, it follows with the Karush–Kuhn–Tucker (KKT) conditions
[7] that λ, ξ, µ2, . . . , µk ∈ R exist with[

∂Ĵ
∂m1

. . . ∂Ĵ
∂mk

∂Ĵ
∂α2

. . . ∂Ĵ
∂αk

]
= 0 , (43)

mi−1 −mi ≤ 0 , i = 2, . . . , k , (44)

−m1 ≤ 0 (45)

wTm− p = 0 , (46)

ξ, µ2, . . . , µk ≥ 0 , (47)

µi(mi−1 −mi) = 0 , i = 2, . . . , k , (48)

−ξm1 = 0 . (49)

We use the KKT conditions (43)-(49) to show that the local minimum (m, α2, . . . , αk)
leads to the coefficients αl1 , . . . , αlq as in (38), to m1 > 0, to r = [r1, . . . , rk]

T as defined
in (37), and to m1 = p/(wTr) as in (39).

First consider the case where m1 = · · · = mk and therefore q = 0. Since q = 0, nothing
is to show for the coefficients. The vector m satisfies the constraint wTm = p because
(m, α2, . . . , αk) is a local minimum of (18). Because p ∈ R+ and 0 < w1, . . . , wk, we
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have m1 > 0. The definition of r leads to r1 = · · · = rk = 1. With the definition l0 = 1
and lq+1 = k + 1 and the convention ρ1,k+1 = 0 we have r as in (37). We further have
m1 = p/(wTr) because r = [1, . . . , 1]T .

Consider now the case with q > 0, i.e., mli−1 < mli for i = 1, . . . , q. With mli−1 < mli

we also obtain mli−1 6= mli for i = 1, . . . , q. Because (m, α2, . . . , αk) is a local minimum,
the partial derivatives of Ĵ with respect to αl1 , . . . , αlq in (42) have to be zero (see (43)),
which leads to the coefficients as in (38).

We now show m1 > 0 and ξ = 0. Evaluating the objective function J at the local
minimum (m, α2, . . . , αk) gives

J(m, α2, . . . , αk) =
σ2

1

m1
+

q∑
i=1

(
1

mli−1
− 1

mli

)
(−ρ2

1,li
σ2

1) ,

where we used the coefficients as in (38). Since m1 < ml1 < ml2 < · · · < mlk per
definition of l, and since σ2

1 6= ρ2
1,l1
σ2

1 because 1 = ρ2
1,1 > ρ2

1,l1
(see the ordering with

respect to the squared correlation coefficients in Theorem 1), the objective J converges
for m1 → 0 to ∞+ from above. Therefore, m1 > 0 and with (49) we obtain ξ = 0.

The vector m satisfies the constraint wTm = p because (m, α2, . . . , αk) is a local
minimum of (18), and therefore m1 = p/(wTr) as in (39). From (48) we derive the
Lagrange multipliers µl1 = · · · = µlq = 0, because mli 6= mli−1 for i = 1, . . . , q.

We now derive the Lagrange multiplier λ. Per definition of l we havem1 = · · · = ml1−1.
The partial derivative of Ĵ with respect to ml1−1, i.e., the component l1−1 of the vector
of partial derivatives of Ĵ with respect to m (41), leads to

1

m2
1

(α2
l1−1σ

2
l1−1 − 2αl1−1ρ1,l1−1σ1σl1−1)− 1

m2
1

(−ρ2
1,l1σ

2
1) + λwl1−1 − µl1−1 = 0 , (50)

where we used αl1 = ρ1,l1σ1/σl1 , µl1 = 0, and ξ = 0. Note that α1 = 1 per definition
and therefore (50) holds also in case l1 = 2. If l1 > 2, we find with the components
1, . . . , l1 − 2 of the vector of partial derivatives of Ĵ with respect to m (41) that

α2
l1−1σ

2
l1−1 − 2αl1−1ρ1,l1−1σ1σl1−1 = −σ2

1 + λm2
1

l1−2∑
i=1

wi +m2
1µl1−1 , (51)

because m1 = · · · = ml1−1 and µ2, . . . , µl1−2 cancel. We use (51) in (50) and obtain

1

m2
1

(−σ2
1 + λm2

1

l1−2∑
i=1

wi)−
1

m2
1

(−ρ2
1,l1σ

2
1) + λwl1−1 = 0 ,

where µl1−1 canceled, which leads to

λ =
σ2

1(1− ρ2
1,l1

)

m2
1

∑l1−1
i=1 wi

. (52)

We now derive r1, . . . , rk. We have per definition r1 = · · · = rl1−1 = 1 because m1 =
m2 = · · · = ml1−1. Consider now mli = · · · = mli+1−1 for i = 1, . . . , q. The components
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li to li+1−1 of the vector of partial derivatives of Ĵ with respect tom (41) with condition
(43) of the KKT conditions lead to

1

m2
li

(−ρ2
1,li
σ2

1) + λ

li+1−1∑
j=li

wj −
1

m2
li

(−ρ2
1,li+1

σ2
1) = 0 , (53)

where we used µli = µli+1
= 0, αli = ρ1,liσ1/σli , and αli+1

= ρ1,li+1
σ1/σli+1

. Note that
µli+1, . . . , µli+1−1 cancel. Insert λ as derived in (52) into (53) and obtain

σ2
1

m2
li

(ρ2
1,li
− ρ2

1,li+1
) =

σ2
1(1− ρ2

1,l1
)

m2
1

∑l1−1
j=1 wj

li+1−1∑
j=li

wj .

This leads to

r2
li

=
m2
li

m2
1

=
(
∑l1−1

i=1 wi)

(
∑li+1−1

j=li
wj)

(ρ2
1,li
− ρ2

1,li+1
)

(1− ρ2
1,l1

)
.

Note that 1 = ρ2
1,1 > ρ2

1,l1
(see Theorem 1) and therefore 1− ρ2

1,l1
> 0. The positivity of

the components of m given by m1 > 0 and the inequality constraints of the optimization
problem, the convention ρ1,k+1 = 0, and the definition αk+1 = 0 lead to r∗ as given in
(37).

Lemma 5. Consider the same setting as in Theorem 1. The value of the objective
function J at a local minimum (m, α2, . . . , αk) of (18) for the budget p ∈ R+ is

J(m, α2, . . . , αk) =
σ2

1(1− ρ2
1,l1

)p

m2
1

∑l1−1
i=1 wi

, (54)

where q ∈ N and l = [l1, . . . , lq]
T ∈ Nq are defined as in Lemma 4.

Proof. Use rl0 , . . . , rlq and αl1 , . . . , αlq as derived in Lemma 4 and the objective as defined
in (17) to obtain

J(m, α2, . . . , αk) =
σ2

1

m1

(
1−

q∑
i=1

(
1

rli−1

− 1

rli

)
ρ2

1,li

)
. (55)

Note that rli = rli+1 = · · · = rli+1−1 for i = 0, . . . , q, and thus that the corresponding
terms in the sum of the objective J evaluate to 0. Expanding the sum in (55) leads to

J(m, α2, . . . , αk) =
σ2

1

m1

(
1−

(
ρ2

1,l1

rl0
−

q−1∑
i=1

(ρ2
1,li
− ρ2

1,li+1
)

rli
−
ρ2

1,lq

rlq

))
. (56)
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We obtain for i = 1, . . . , q − 1 that

(ρ2
1,li
− ρ2

1,li+1
)

rli
= (ρ2

1,li
− ρ2

1,li+1
)

√√√√(
∑li+1−1

j=li
wj)

(
∑l1−1

j=1 wj)

(1− ρ2
1,l1

)

(ρ2
1,li
− ρ1,l2i+1

)︸ ︷︷ ︸
1
rli

=
(1− ρ2

1,l1
)
(∑li+1−1

j=li
wj

)
∑l1−1

j=1 wj

√√√√(
∑li+1−1

j=li
wj)

(
∑l1−1

j=1 wj)

(ρ2
1,i − ρ2

1,i+1)

(1− ρ2
1,l1

)︸ ︷︷ ︸
rli

,

which we use in (56) to derive

J(m, α2, . . . , αk) =
σ2

1

m1

1−
ρ2

1,l1

rl0
+

(
1− ρ2

1,l1∑l1−1
i=1 wi

)
q−1∑
i=1

li+1−1∑
j=li

wjrli +
ρ2

1,lq

rlq


=
σ2

1(1− ρ2
1,l1

)

m1
∑l1−1

i=1 wi

k∑
i=1

wiri . (57)

Use wTr = p/m1 (see Lemma 4) to obtain (54).

Lemma 6. Consider the same setting as in Theorem 1. In particular, let ρ2
1,1 > · · · >

ρ2
1,k > 0 and let the costs w = [w1, . . . , wk]

T ∈ Rk+ satisfy

wi−1

wi
>
ρ2

1,i−1 − ρ2
1,i

ρ2
1,i − ρ2

1,i+1

, (58)

for i = 2, . . . , k. Let q ∈ N with q < k − 1 and l = [l1, . . . , lq]
T ∈ Nq with 1 < l1 < · · · <

lq < k + 1 and set l0 = 1 and lk+1 = k + 1. The costs w1, . . . , wk and the correlation
coefficients ρ1,1, . . . , ρ1,k satisfy the inequality

k∑
j=1

√
wj(ρ2

1,j − ρ2
1,j+1) <

q∑
i=0

√√√√√
li+1−1∑

j=li

wj

(ρ2
1,li
− ρ2

1,li+1

)
. (59)

Proof. Rewrite (59) as

q∑
i=0

li+1−1∑
j=li

√
wj(ρ2

1,j − ρ2
1,j+1) <

q∑
i=0

√√√√√
li+1−1∑

j=li

wj

(ρ2
1,li
− ρ2

1,li+1

)
. (60)
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There exists an i ∈ {0, . . . , q} with li+1 − li > 1 because q < k − 1. The terms of the
outer sum in (60) are nonnegative and therefore it is sufficient to show

li+1−1∑
j=li

√
wj(ρ2

1,j − ρ2
1,j+1) <

√√√√√
li+1−1∑

j=li

wj

(ρ2
1,li
− ρ2

1,li+1

)
. (61)

First consider the case li+1 − li = 2, where we define for the sake of exposition a = li,
b = li + 1, and c = li+1. The inequality of the arithmetic and the geometric mean leads
to √

wawb(ρ
2
1,a − ρ2

1,b)(ρ
2
1,b − ρ2

1,c) <
wa(ρ

2
1,b − ρ2

1,c) + wb(ρ
2
1,a − ρ2

1,b)

2
. (62)

Note that there is a strict inequality in (62) because assumption (58) guarantees wb(ρ
2
1,a−

ρ2
1,b) 6= wa(ρ

2
1,b − ρ2

1,c) through

wb(ρ
2
1,a − ρ2

1,b) < wa(ρ
2
1,b − ρ2

1,c) .

Adding the positive quantities wa(ρ
2
1,a − ρ2

1,b) and wb(ρ
2
1,b − ρ2

1,c) to both sides of (62)
results in (√

wa(ρ2
1,a − ρ2

1,b) +
√
wb(ρ

2
1,b − ρ2

1,c)
)2

< (wa + wb)(ρ
2
1,a − ρ2

1,c) . (63)

Taking the square root of (63) shows√
wa(ρ2

1,a − ρ2
1,b) +

√
wb(ρ

2
1,b − ρ2

1,c) <
√

(wa + wb)(ρ
2
1,a − ρ2

1,c) , (64)

which is (61) for the case li+1 − li = c− a = 2.
We now show that the result for li+1 − li = 2 can be extended to li+1 − li = 3. Define

a = li, b = li + 1, c = li + 2, and d = li+1 and use (64) to derive√
wa(ρ2

1,a − ρ2
1,b) +

√
wb(ρ

2
1,b − ρ2

1,c) +
√
wc(ρ2

1,c − ρ2
1,d)

<
√

(wa + wb)(ρ
2
1,a − ρ2

1,c) +
√
wc(ρ2

1,c − ρ2
1,d) . (65)

Assumption (58) leads to

wa + wb
wc

=
wa
wc

+
wb
wc

>
wa
wb

wb
wc

+
wb
wc

>
ρ2

1,a − ρ2
1,b

ρ2
1,c − ρ2

1,d

+
ρ2

1,b − ρ2
1,c

ρ2
1,c − ρ2

1,d

=
ρ2

1,a − ρ2
1,c

ρ2
1,c − ρ2

1,d

,

and thus we obtain√
wa(ρ2

1,a − ρ2
1,b) +

√
wb(ρ

2
1,b − ρ2

1,c) +
√
wc(ρ2

1,c − ρ2
1,d) <

√
(wa + wb + wc)(ρ2

1,a − ρ2
1,d)

with the same arguments as (64). Induction establishes the inequality (61) for the case
li+1 − li > 3.
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