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Optimization of complex systems often involves evaluation of a quantity several times,
which is potentially computationally prohibitive. This can be alleviated by considering in-
formation sources representing the original model with lower fidelity and cost. This paper
describes an optimization method for the case where the objective function is represented
by different information sources with varying fidelities and computational costs. The pro-
posed methodology creates a multi-information source value-of-information framework that
defines optimal strategies for querying of information sources. The surrogate Gaussian pro-
cess model is used for fusion of information sources. Then, the knowledge gradient policy
is incorporated by considering the probability of violation of constraints for sequential de-
cision making to identify the next design and information source to evaluate. The high
performance of the developed methodology is demonstrated in terms of making balance
between cost and information gain of various information sources of a one-dimensional
example test problem and an aerodynamic design example.

I. Introduction

In computational science and engineering, in order to optimize a complex system, quantities of interest
need to be evaluated several times, which is potentially expensive. These quantities of interest can be often
described by multiple computational models, called information sources, which can be used to evaluate the
quantities of interest to alleviate the computational burden of optimization process. These information
sources can be different experiments, numerical methods, or previous data. Each of these information
sources has an associated level of accuracy to estimate the quantities of interest. This level of accuracy to
represent the real world is referred to as fidelity which leads to different computational cost. This paper
is concerned with the development of an approach for incorporating different available information sources,
with potentially differing levels of fidelity and cost, to enable accurate and efficient constrained optimization
of a real world quantity of interest.

One common approach in multifidelity optimization is to treat the models as a hierarchy and replace
or calibrate low-fidelity information with high-fidelity results [1–5]. Trust region methods are used to ap-
proximate the high-fidelity model for optimizing an objective function when the derivatives of the objective
are available. In Refs. 6 and 7, a trust region based model-management method is employed in which the
gradients of the low-fidelity objective function and constraints are scaled or shifted to match those of a
high-fidelity model. Ref. 8 presents a convergent multifidelity optimization algorithm using the trust region
method which does not require the high-fidelity derivatives. Calibration techniques such as efficient global
optimization [2] and the surrogate management framework [3] are often employed in cases where gradients
are not available. In these cases, Kriging surrogate models, also referred to as Gaussian process regres-
sion [9], are often used as a method of interpolation, which is based on random spatial processes [10]. In
Ref. 3, a framework is presented for generating a sequence of approximations to the objective function and
using these approximations as surrogates for optimization without requiring the derivatives of the objective.
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In Ref. 11, a multifidelity sequential kriging optimization method is proposed which uses the expected im-
provement as a measure to determine the next design point and the level of fidelity model to evaluate. In
Ref. 12, a method is proposed based on statistical techniques to adaptively build a multifidelity surrogate
for multifidelity optimization. In Ref. 13, a multifidelity multidisciplinary design optimization approach is
presented which synthesizes information from various models and manages model fidelity throughout the
design process through the application of estimation theory and global sensitivity analysis.

In order to handle constraints in the optimization, surrogate-based methods have been proposed to
approximate the constraints which are expensive to evaluate. In Ref. 14, the probability of feasibility is
calculated using a Kriging surrogate approximating each constraint and multiplied by the expected improve-
ment at the sampled point. In Ref. 5, efficient global optimization is used to perform optimization and the
penalty method is used to consider constraints. Ref. 15 maximizes the expected improvement with samples
constrained to lie in the feasible space defined based on the mean values of the Kriging models for the con-
straints. In many practical applications, the constraint function returns values only for the feasible space
which makes the constraint function discontinuous, or only feasibility or infeasibility of a sample point is
available instead of the value of the constraint at that sample, which makes the constraint function binary.
In these cases, instead of predicting the constraint response values over the entire design space using surro-
gates, the goal is to predict whether or not the response is greater than a threshold. For considering these
constraints, classification approaches have been used to construct a boundary separating the feasible and
infeasible regions. The boundaries are constructed using methods such as convex hulls [16], support vector
machines [17], etc. In Ref. 18, probabilistic support vector machine (PSVM) [19, 20] is used to quantify
the probability of constraint violation, and is implemented within a constrained efficient global optimization
formulation to select samples for locating the optimal solution.

In this work, we propose a method for optimizing a function which is expensive to evaluate, where a
variety of information sources with different levels of computational cost and model fidelity are available to
approximate the objective. Here, we relate the fidelity to uncertainty due to model inadequacy which is
uncertainty due to the omission of some aspects of reality, improper modeling, or unrealistic assumptions
[21–23]. This fidelity is characterized by assigning a probability distribution to the output of each individual
model on the basis of the model inadequacy associated with that particular model. Surrogate models
are constructed for information sources using Gaussian processes, and a single fused Gaussian process is
constructed by fusing the information obtained from evaluating the design and the associated information
source. There are several techniques used in practice for combining information from multiple information
sources. Among them are the adjustment factors approach [24–26], Bayesian model averaging [27–31], and
fusion under known and unknown correlation [32, 33]. Here, the fused Gaussian process is constructed
based on the data and fidelity variances of the information sources which are queried. The next design to
evaluate and the model to query are determined based on the cost of querying and the expected improvement
criterion, which we characterize here using the knowledge gradient policy. The knowledge gradient policy
was introduced in Ref. 34 as a look-ahead policy which takes an information-economic approach to maximize
(or minimize) an objective using a single information source with noisy observations from that information
source [35–38]. In this work, our contribution is incorporating the available information from different
information sources to the fused model and using this fused model for decision making. Unlike the previous
methods in which the expected improvement of each information source and the associated cost were used for
decision making, in our proposed methodology, the expected improvement in the fused model by considering
the fidelity variance and cost of each information source are used to select the next design and model.
In other words, instead of performing the knowledge gradient for each individual model constructed from
observed experiments, our proposed method performs the knowledge gradient policy for computation of
expected improvement using the fused model constructed from the whole observed data. A key feature
of the proposed method is the adaptive selection process which arises from consideration of both cost and
information fusion. Our proposed multi-information source optimization approach is applied to optimize a
one-dimensional example test problem and an aerodynamic design example, and the results are compared
with the method presented in Ref. 12. It is shown that our proposed method identifies better solutions,
especially in the case of limited budget available for querying.

The rest of the paper is organized as follows. Section II presents the approach proposed here. In
Section III, the approach is applied to a one-dimensional test function and an aerodynamic example problem
and the results are presented, and conclusions are drawn in Section IV.
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II. Approach

In this section, our proposed approach is introduced for an optimization problem subject to m inequality
constraints. A mathematical statement of the problem is formulated as:

x∗ = argmax
x∈χ

f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m.
(1)

where f is the objective function, {gj , where j = 1, 2, . . . ,m} are the m real-world constraints, and x is a
set of design variables in the input design space χ. In the optimization process, the real-world objective
function and the real-world constraints must be estimated at each iteration. For this estimation task, often
several information sources, such as numerical simulation models, experiments, expert opinions, etc., are
available. These sources have varying fidelities, or approximation accuracies over the design space, and
varying computational costs. The approach we describe here enables the exploitation of all available sources
of information, in an information-economic sense, that balances the cost and associated fidelity of each
information source when choosing how to estimate the quantity of interest and the constraints. In our
formulation, the core issue is how to manage dynamic querying to choose what new information sources to
sample and with what input, at each step of the overall decision process. The choice of next design point to
query must be based on how much a sample tells us immediately about the design goal at hand and if that
sample is expected to satisfy the current constraints. This choice must also trade off the costs associated with
a particular information source query and the expected improvement or information gained by executing the
query.

A. Fused Gaussian Process

Let assume we have M information sources available. Each information source describes the quantity of
interest, f(x), at design point x with the associated fidelity represented by additive independent identically
distributed Gaussian noise as [39–41]:

yi(x) = f(x) +N (0, λi). (2)

where yi(x) denotes the output distribution of ith information source at design x and λi is the fidelity
variance of the corresponding information source. Let Xi = [x1,i, . . . ,xNi,i] be Ni evaluated design points
with the observed objective values yi = [y1,i, . . . , yNi,i] for the ith information source. Using the Gaussian
process for modeling the objective over the design space for this information source will lead to the following
covariance function:

cov(yi) = K(Xi,Xi) + λiI, (3)

where K(Xi,Xi) is a Ni × Ni matrix specifying the covariance between the outputs which is written as a
function of the inputs. We consider the commonly used squared exponential covariance function as:

k(x,x′) = σ2
f exp

(
−

d∑
h=1

(xh − x′h)2

2l2h

)
, (4)

where d is the dimension of the input space, σ2
f is the signal variance, and lh is the characteristic length-scale

that indicates the correlation between the points within dimension h.
The first step in our approach is to construct a fused Gaussian process. We first assume that N pre-

vious queries of information sources are available that take the form of tuples (i1:N ,x1:N , y1:N ), in which
i1:N ∈ [1, . . . ,M ] represent the information sources that data belong to, x1:N represent the design decisions
corresponding to these information sources denoted by XN , and y1:N represent the observations obtained
which are denoted by yN . Constructing a Gaussian process over data, we model the covariance between
these data from various information sources using the following covariance function:

cov(yN ) = K(XN ,XN ) + Λ, (5)
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where Λ is a diagonal matrix of size N ×N in which each diagonal element is the fidelity variance associated
with the information source that data belongs to. This matrix is given as:

Λ =


λi1 0 · · · 0

0 λi2 · · · 0
...

...
. . .

...

0 0 · · · λiN

 . (6)

The joint distribution of the observed objective functions, yN , and unobserved function values, yf , at any
set of P samples x1:P denoted by X in the design space can be written as:[

yN

yf

]
∼ N

(
0,

[
K(XN ,XN ) + Λ K(XN ,X)

K(X,XN ) K(X,X)

])
, (7)

where K(XN ,XN ) is a N ×N matrix with mnth entry as k(xm,xn), and K(XN ,X) is a N ×P matrix with
mpth entry as k(xm,xp). Deriving the conditional distribution, we construct the fused Gaussian process
with mean function µ and covariance matrix Σ as:

yf ∼ GP (µ,Σ), (8)

where
µ = K(XN ,X)T [K(XN ,XN ) + Λ]−1yN , (9)

Σ = K(X,X)−K(XN ,X)T [K(XN ,XN ) + Λ]−1K(XN ,X). (10)

The parameters σ2
f , {lj , j = 1, . . . , d} as well as the fidelity variance associated with each information source

in Λ which are all represented as Ψ, can be obtained by performing the maximum likelihood method. This
involves taking the log of the marginal likelihood, which can be written as:

log p(yN |XN ,Ψ) = −1

2
yTNK

−1yN −
1

2
log |K| − N

2
log 2π, (11)

where K = K(XN ,XN ) + Λ. The maximum likelihood estimates of parameters are obtained by computing
the partial derivatives of the log marginal likelihood with respect to the parameters as:

∂

∂ψ
log p(yN |XN ,Ψ) =

1

2
yTNK

−1 ∂K

∂ψ
K−1yN −

1

2
tr(K−1

∂K

∂ψ
)

=
1

2
tr

(
((K−1yN )(K−1yN )T −K−1)

∂K

∂ψ

)
,

(12)

for ψ ∈ Ψ.
In our approach, we construct the fused Gaussian process by fusing the data available as training sets

for all the information sources and those data queried from the information sources. After querying from
each information source, the fused Gaussian process is updated. This fused Gaussian process then contains
information synthesized from knowledge gained from each information source that has been queried, so it
has the most comprehensive knowledge among all the information sources.

B. Gaussian Process for Constraints

For determining the next design point to evaluate, instead of computing the real-world constraints which
are typically expensive, surrogate Gaussian process is constructed for each constraint. Assuming that the
jth constraint is evaluated at Nj design points denoted by Xj and the corresponding constraint values are
represented by gj , the posterior mean µj of its Gaussian process can be computed in closed form for any
unevaluated design x as:

µj(x) = Kj(Xj ,x)T [Kj(Xj ,Xj) + s2jI]−1gj , (13)

where Kj(Xj ,Xj) is a Nj ×Nj matrix with mnth entry as kj(xm,j ,xn,j), Kj(Xj ,x) is a Nj × 1 vector with
mth entry as kj(xm,j ,x), and s2j is the noise variance of the Gaussian process. The posterior variance for
design x can be computed as:

σ2
j (x) = kj(x,x)−Kj(Xj ,x)T [Kj(Xj ,Xj) + s2jI]−1Kj(Xj ,x). (14)

These Gaussian processes for constraints are then used, as discussed in the following subsection, to find the
design point with desired certainty regarding the probability of violation of constraints.
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C. Choosing the Next Design and Information Source

The next step of our approach, which is determining the next design point and the information source to
query from, is formulated in a decision-theoretic manner. Based on the available data, which have been
used to construct the fused Gaussian process, we have a posterior distribution on F (y|x), and a given
design decision x has expected value under the posterior, E[F (y|x)|i1:N ,x1:N , y1:N ]. If we were to make no
additional queries, the best expected objective value would be:

y∗N = max
x∈χ

E[F (y|x)|i1:N ,x1:N , y1:N ]. (15)

Similarly, if we were to make one additional query, we would obtain a value:

y∗N+1 = max
x∈χ

E[F (y|x)|i1:N+1,x1:N+1, y1:N+1]. (16)

The difference y∗N+1 − y∗N is the improvement in value that results from the additional query. The essential
idea in such a value of information analysis is to choose the query or set of queries that maximizes this
improvement. This improvement depends on yN+1, and so it is unknown when choosing iN+1 and xN+1,
but its posterior predictive distribution can be determined, and thus the expected value of y∗N+1 − y∗N can
be evaluated under the posterior at time N . This value is referred to as the expected improvement (EI)
defined as:

EI(i,x) = E
[
max
x∈χ

E[F (y|x)|i1:N , iN+1 = i,x1:N ,xN+1 = x, y1:N ]−max
x∈χ

E[F (y|x)|i1:N ,x1:N , y1:N ]

]
= E

[
max
x∈χ

E[F (y|x)|i1:N , iN+1 = i,x1:N ,xN+1 = x, y1:N ]

]
−max

x∈χ
E[F (y|x)|i1:N ,x1:N , y1:N ].

(17)

We propose to use a Knowledge Gradient (KG) approach as a measure of expected improvement in order
to determine the query N+1 given N prior queries and the information source to query from, and thus build
off the work of Refs. 36–38. KG takes an information-economic approach to maximizing (or minimizing) an
objective using a single information source with noisy observations from that information source. Specifically,
let assume we have a set of designs with normally distributed beliefs about their quality. After N queries,
we have a vector of means θN = E[F (y|x)|i1:N ,x1:N , y1:N ] which is a discretization of a continuous function
and a vector of precisions, βN = 1/var(F (y|x)|i1:N ,x1:N , y1:N ). The knowledge state is thus SN = (θN , βN ).
If the design process stops now, we would choose the best design based on the current knowledge, which is
given by:

xN = argmax
x∈χ

θNx . (18)

The value of being in state SN is then given as V N (SN ) = θNxN . If one additional query can be made, then

the value of being in the next knowledge state is given as V N+1(SN+1(x)) = max
x′∈χ

θN+1
x′ . The knowledge

gradient is then defined as:

νKG,Nx = E[V N+1(SN+1(x))− V N (SN )|SN ], (19)

which can be viewed as the gradient of V N (SN ) with respect to querying the single information source at
x [37]. The knowledge gradient policy for sequentially choosing the next query is then given as:

xKG,N = argmax
x∈χ

νKG,Nx . (20)

Here, we need to compute the knowledge gradient for the fused Gaussian process in order to determine
the next design point and the information source to query. The knowledge gradient at design point x for
the ith information source given N available data can be written as [37]:

νKG,Nx,i = E[max
x′∈χ

θNx′ + σ̃x′,i(Σ
N ,x)Z|SN ]−max

x′∈χ
θNx′ , (21)

where Z is a standard normal random variable, θNx′ and the column vector σ̃x′,i(Σ
N ,x) are the predicted

expected value and uncertainty of θ at design point x′ if design x is evaluated at step N . The column vector
σ̃x′,i(Σ

N ,x) is given by:

σ̃x′,i(Σ
N ,x) =

ΣNex√
λi + ΣNxx

, (22)
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where ex is a column vector of 0’s with a 1 in the position corresponding to x, ΣN is the covariance between
the measurements x′ in the fused Gaussian process, and λi is the fidelity variance of information source i.
Calculation of the knowledge gradient, which is based on a piecewise linear function, is discussed in detail
in two algorithms presented in Ref. 38.

By denoting Ci(x) as the cost of querying information source i at design x, without considering con-
straints, we find the query (iN+1,xN+1) that minimizes the expected cost per unit expected improvement,
given by:

(iN+1,xN+1) = argmin
i∈[1,...,M ],x∈χ

Ci(x)

EI(i,x)

= argmin
i∈[1,...,M ],x∈χ

Ci(x)

νKG,Nx,i

.

(23)

Equation (23) selects the best design sample and the information source to query. However, not all the
evaluated points in the design space satisfy all the constraints. We need to minimize Equation (23), to
obtain the maximum expected improvement with minimum possible cost over all feasible design points.

In order to consider constraints, penalty functions have been widely used due to their simplicity. These
functions include both static and dynamic strategies. In the static case, a constant penalty is applied to those
solutions that violate feasibility in any way. In some problems, the optimal solution lies on the boundary
of the feasible region. In addition, in some highly constrained problems, finding feasible samples might
be difficult, and the search has to begin with infeasible samples. Therefore, restricting the search to only
feasible solutions or imposing very severe penalties makes it difficult to find the optimum solution. On
the other hand, if the penalty is not severe enough, then too large a region is searched and much of the
search time will be used to explore regions far from the feasible region. In the dynamic case, these issues
are handled by increasing the severity of the penalty as the search progresses. This has the property of
allowing highly infeasible solutions early in the search, while continually increasing the penalty imposed
to eventually move the final solution to the feasible region [42]. The Gaussian processes constructed for
constraints in Subsection B are Bayesian representation of constraints. The uncertainty in these GPs may
come from different sources of uncertainty, i.e. model discrepancy, parametric uncertainty, code uncertainty,
etc. Therefore, we need to develop a methodology which is able to handle the stochasticity in constraints. To
perform the penalty method in our approach, the penalty function multiplied by the probability of violation
of constraints is added to the cost of querying of information source i as:

Cpi(x) = Ci(x) + fp × Pv(x), (24)

where Cpi(x) is the penalized cost function at design x, Ci(x) is the cost of querying from information source
i, fp is the penalty function, and Pv(x) is the probability of violation of constraints at design x. In the first
steps of the process, we aim to involve the infeasible samples in the search process to explore the information
they might carry. Our approach achieves this idea by using a dynamic penalty function strategy. In this
strategy, the value of penalty function is small in the first iterations, which helps the methodology to explore
the entire search space, and as the process goes on, its value increases which decreases the probability of an
infeasible sample to be selected. Thus, we consider the penalty function which varies with the number of
iterations, defined as:

fp = Cv ×
(

1− exp(− t
τ

)

)
, (25)

where Cv is a positive penalty constant imposed as the cost of violation of constraints, t is the iteration
number, and τ is a user-defined value which determines the rate of increase of penalty as the number of
iterations increases. This value is specified based on the available budget and risk attitude of the user.

The probability of violation of constraint j at a design sample is computed based on the normal dis-
tribution coming from the corresponding Gaussian process. According to Equations (13 - 14), the value of
constraint gj at a design point x is distributed normally with mean µj(x) and variance σ2

j (x) as:

gj(x) ∼ N (µj(x), σ2
j (x)). (26)

We use the method of cumulative distribution function to compute the probability of violating the constraint
gj by design point x as:

Pj(x) = P (gj(x) > 0) = 1− P (gj(x) < 0) . (27)
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Assuming that we have m independent constraints, the probability of violation of constraints at design x,
Pv(x), can be computed as:

Pv = P (g1(x) > 0 ∪ g2(x) > 0 ∪ · · · ∪ gm(x) > 0)

= 1− P (g1(x) < 0 ∩ g2(x) < 0 ∩ · · · ∩ gm(x) < 0)

= 1−
m∏
j=1

P (gj(x) < 0)

= 1−
m∏
j=1

(1− P (gj(x) > 0))

= 1−
m∏
j=1

(1− Pj(x)) . (28)

Therefore, to select the next information source, iN+1, and the next design sample, xN+1, Equation (23) is
modified as:

(iN+1,xN+1) = argmin
i∈[1,...,M ],x∈χ

(
Ci(x) + fp × Pv(x)

νKG,Nx,i

)
. (29)

Latin Hypercube sampling is used to generate samples in the input design space χ for maximization of
the knowledge gradient for problems with multidimensional continuous design variables. Assuming that S
Latin Hypercube samples are generated as alternatives, and M information sources are available, S ×M
values are computed according to Equation (29). As we seek low evaluation cost for a large performance gain
by considering the constraints, the sample and the information source that obtain the minimum value are
selected to be evaluated. After querying from the selected information source, the fused Gaussian process
of the objective function gets updated according to Equations (8-10). Furthermore, the constraints are
evaluated at the selected design sample and the corresponding Gaussian processes get updated. This process
repeats until a termination criterion, such as exhaustion of the querying budget, is met. In order to find
the optimum solution of Equation (1), we discretize the design space evenly. The grids must be sufficiently
dense to get a good approximation to the continuous design space. Then, the value of the objective function
and the probability of violating the constraints are computed at each point according to Equations (9) and
(28) respectively. Among all the points with probability of violation less than a specified value, γ, the point
that has the maximum function value is selected as the optimum solution.

Our proposed fusion-based multi-information source optimization approach using a knowledge gradient
policy is presented in Algorithm 1.

Algorithm 1: Multi-Information Source KG Policy

1: Construct the fused Gaussian process for the objective function by fusing the data of all information
sources according to Equations (8 - 10).

2: Construct Gaussian process for the constraints.

repeat

3: Generate Latin Hypercube samples in input design space χ.

4: Select the sample and the information source according to Equation (29).

5: Update the fused GP of the objective function and GP of the constraints based on the observation
obtained from the chosen information source at selected design sample.

until termination

6: Return the point with the largest estimated value according to the fused GP among the points with the
probability of violating the constraints less than the specified value γ.
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III. Application and Results

In this section, we present the key features of our fusion-based multi-information source optimization
approach using a knowledge gradient policy on two demonstrations. The first case is an analytical problem
with one-dimensional input and output, and the second demonstration is the minimization of the drag
coefficient of a NACA 0012 airfoil subject to a constraint on the lift coefficient.

A. One-Dimensional Function

The first example is maximization of a one-dimensional constrained function shown in Figure 1 and defined
as:

x∗ = argmax
x∈[0 1.2]

−(1.4− 3x) sin(18x)

s.t. x2 − 1.2 ≤ 0.
(30)

Figure 1: One-dimensional optimization problem of Equation (30).

We consider two information sources f1 and f2 with added model discrepancy with fidelity variances of
λ1 = 10−5 and λ2 = 10−2, and constraint with noise variance of σ2 = 10−3, given as:

f1(x) = −(1.4− 3x) sin(18x) +N (0, λ1),

f2(x) = −(1.4− 3x) sin(18x) +N (0, λ2),

g1(x) = x2 − 1.2 +N (0, σ2).

(31)

The evaluation costs for information sources are set to C1 = 20 and C2 = 15, and we assume Cv = 5.
Figure 2 shows the objective function and the constraint with (1 − 2γ) confidence interval. The solid

lines show the feasible region and dashed lines show the objective function where the probability of violation
is greater than γ. In the right plot, it can be seen that the optimum point is in the right side of the plot,
however due to the infeasibility of the tallest hip of the function, the selected point is in valley of the function.
On the other hand, for γ = 10% the optimum solution is shifted to the left side, due to the expansion of
infeasible region in the right hand side of the objective function. This shows the effect of risk attitude on
the optimal solution and decision making task.
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Figure 2: The objective function, constraint and optimal solution of optimization problem in Equation (30) for γ = 10% and
γ = 50%.

In order to asses the performance of our approach, we compare our methodology with the method
presented in Ref. 12 which is called MF algorithm. In Ref. 12, each information source has a separate
Gaussian process, and predictions are obtained by fusing the information via the method presented in
Ref. 43. The next design to evaluate is selected by applying the expected improvement function on these
surrogates, and the next information source to query is chosen based on a heuristic that aims to balance
information gain and cost of query. Table 1 represents the expected results obtained by our approach and
MF algorithm for γ = 10% and γ = 50%. The expected results are averaged over 500 replications of the
simulations. The total cost of querying as the stopping criterion for these simulations is set to Ctot = 150.
As it can be seen, our approach improves on the work of Ref. 12. It is due to the fact that our methodology

Table 1: Expected results obtained by our proposed approach and MF Algorithm [12] over 500 replications
of the simulations of optimization problem in Equation (30) for γ = 10% and γ = 50%.

Optimal Solution Proposed Approach MF Algorithm [12]

γ = 10%
x∗ 0.8000 0.8010 0.6999

f∗ 0.9657 0.9766 0.8537

γ = 50%
x∗ 1.0909 1.0769 0.9556

f∗ 1.3261 1.3449 1.2309

allows rigorously exploiting correlations across the design space which reduces the uncertainty by querying
one new design sample, even if it is queried from a information source with lower fidelity. Thus, we obtain
a more accurate estimate of the true objective function from each sample. Note that this feature is also
accomplished by constructing our fused Gaussian process which has the most comprehensive knowledge
among all the information sources by fusing all the queried samples and fidelity variances of information
sources.

Figure 3 shows the effect of value of τ on sampling from the infeasible region. As it has been shown in the
left plot of Figure 2, the right hand side of function is infeasible for γ = 10%. However, the infeasibility of
the right hand side should be learnt by sequential sampling of both objective and constraint. This requires
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exploration of our design space during sequential decision making process. This fact can be controlled by the
use of parameter τ as part of our penalty function. As it can be seen in Figure 3, as the value of τ increases,
the rate of increase of penalty decreases and in the first iterations, samples can be selected in the infeasible
region. Therefore, the value of τ is selected based on the available budget and risk attitude of user.

Figure 3: Effect of τ in querying infeasible samples.

B. NACA 0012 Drag Coefficient with Lift Coefficient Constraint

The second demonstration to apply our fusion-based multi-information source optimization approach is a two-
dimensional constrained aerodynamic design example. The airfoil of interest is the NACA 0012, a common
validation airfoil [44, 45]. Since Navier-Stokes equations used to solve the fluid dynamics are expensive to
solve, simplified equations have been developed to solve this problem. These simplified equations consider
some assumptions which lead to variable fidelities. Here, the computational fluid dynamics programs XFOIL
[46] and SU2 [47] are used as the two information sources. XFOIL is a solver for the design and analysis of
airfoils in the subsonic regime. It combines a panel method with the Karman-Tsien compressibility correction
for the potential flow with a two-equation boundary layer model. This causes XFOIL to overestimate lift
and underestimate drag [48]. SU2 uses a finite volume scheme and Reynolds-averaged Navier-Stokes (RANS)
method with the Spalart-Allmaras turbulence model, which allows SU2 to be significantly more accurate
than XFOIL in the more turbulent flow regimes at higher values of Mach number and angle of attack.

In this problem, we are particularly concerned with finding the Mach number M and angle of attack α
that minimize the coefficient of drag CD of a NACA 0012 airfoil subject to maintaining a minimum coefficient
of lift CL:

x∗ = argmax
x∈χ

−CD

s.t. 0.4− CL ≤ 0.
(32)

where x∗ = [M∗, α∗]. The design space is χ = IM × Iα with IM = [0.15 0.75] and Iα = [−2.2 13.3]. The
objective and constraint, as well as contour plot of objective and constraint are shown in Figure 4.

We set the evaluation costs to be C1 = 500 and C2 = 300, and the fidelity variances are set to be
λ1 = 10−5 and λ2 = 10−3 for information sources and σ2 = 10−5 for fidelity variance of the constraint. The
maximum probability of violating the constraint is γ = 10%, and the computational budget is limited to
15000. The penalty term is set to Cv = 400.

10 of 13

American Institute of Aeronautics and Astronautics



Figure 4: Optimization problem of Equation (32).

Table 2 represents the expected results obtained by our approach and MF algorithm [12] for γ = 10%.
The expected results are averaged over 500 replications of the simulations. The Monte Carlo solution is
obtained by discretization of the design space into 2500 grids and finding the point with minimum coefficient
of drag which does not violate the constraint on coefficient of lift. It is clear that our proposed methodology
outperforms the MF Algorithm by obtaining the lowest expected objective value which is closer to the Monte
Carlo result.

Table 2: Expected results obtained by our proposed approach and MF Algorithm [12] over 500 replications
of the simulations of optimization problem in Equation (32) for γ = 10%.

Monte Carlo Solution Proposed Approach MF Algorithm [12]

f∗ 0.0091 0.0098 0.0382

IV. Conclusion

This paper has presented an approach to perform constrained optimization of expensive to evaluate
functions when different information sources with varying fidelities and evaluation costs are available. The
approach considers the trade off between cost and performance gain for querying from information sources
of varying fidelity to find the design decision which optimizes the objective function. This is achieved by
fusing the information obtained from information sources to construct the fused Gaussian process. Then,
the knowledge gradient policy is incorporated as a measure of expected improvement to identify the next
design to evaluate, as well as to select the information source with which to perform the evaluation. This
is performed based on the evaluation cost and fidelity of the information sources. The proposed strategy
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samples the design space by balancing exploration and exploitation tasks both between and within the
available information sources. We demonstrated our approach on the optimization of a one-dimensional
example test problem and an aerodynamic design example. It has been shown that the proposed approach
finds the feasible optimum value of objective in a high performance decision-theoretic manner.
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