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ABSTRACT 
A novel approach is proposed for the modeling of uncertainties in finite element models of 
linear structural or thermal problems. This uncertainty is introduced at the level of each finite 
element by randomizing the corresponding elemental matrices (e.g., mass, stiffness, 
conductance) using the maximum entropy concepts. The approach is characterized by only 
two parameters, one expressing the overall level of uncertainty while the other is the 
correlation length underlying the random elemental matrices. The approach is exemplified on 
a structure example developed with Nastran.  
 
INTRODUCTION 
A large number of investigations have focused in the last three decades on the introduction of 
uncertainty in computational problems, structures in particular, see [1] for a recent review of 
applicable stochastic methods. Broadly speaking, one can separate the approaches into two 
classes: those that focus on the modeling of specific material and/or geometric properties (as 
random variables, processes, or fields in a probabilistic context), and those that proceed 
directly at the level of a reduced order model (ROM) of the finite element discretization. 
These latter methods benefit in particular from the computational efficiency of ROMs and 
thus are quite attractive. One challenge they bring out is the modeling of the ROM 
parameters, often regrouped in matrices, e.g., mass and stiffness matrices of linear structural 
problems. 
This modeling issue was elegantly resolved by Soize [2] who proposed to apply a maximum 
entropy concept to the random matrices, that is the joint probability density function of the 
random matrix elements should be selected to (i) satisfy physical requirements (such as 
positive definiteness, symmetry, non singularity), (ii) ensure that the mean of the matrices 
corresponds to the matrix of the baseline deterministic model, and (iii) maximize the entropy 
given the constraints of (i) and (ii). This broad concept has been applied to matrices and fields 
with a variety of properties [1-14] for which the construction of realizations has been detailed 
and is often very straightforward permitting a broad set of applications, see [3] for review. 
A key aspect of the maximum entropy approach is that it does not correspond to uncertainty 
on specific parameters (thickness, Young’s modulus, etc.) of the computational model but 
rather on the global properties of the reduced order model. Accordingly, this approach does 
capture some epistemic uncertainty, in addition to the aleatoric one. To exemplify this aspect, 
consider the modeling of a plate the mean model of which is flat and symmetric through the 
thickness. Adopting as ROM basis vectors a series of linear modes of the transverse and in 
plane motions leads to a mean ROM stiffness matrix which exhibits a series of zeros 
representative of the decoupling of the in plane and transverse motion. The application of the 
maximum entropy approach (e.g., according to [2]) leads to random matrices which are fully 
populated, i.e., corresponding to structures with in plane – transverse coupling. That is, the 
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randomization has generated models of plates exhibiting asymmetry through thickness and/or 
curvature at the contrary of the mean model but likely consistently with a manufactured 
version of this mean model. 
While the strategy to impose particular properties on the random ROM matrices is clear, i.e., 
redo the calculus of variation effort involved in the optimization of the entropy, it is much 
more difficult to impose particular features to the ROM solution. Such an issue has been 
encountered recently [14] in connection with structures exhibiting a localized structural or 
thermal response. More specifically, it was expected on physical grounds that the response 
would remain localized to a fraction of the structure, however, the application of the 
maximum entropy to ROMs lead to a globalization of a response as can be expected from a 
high entropy solution. 
A modification of the maximum entropy modeling approach was developed for the above 
cases by understanding the properties of the ROM matrices leading to a localization of the 
response and adapting the method to meet those properties. Another approach, however, 
would be to introduce the uncertainty in a more spatially localized manner to mitigate the 
globalization associated with the maximization of the entropy. It is such an approach which is 
proposed here, i.e., to introduce the uncertainty on each finite element matrix (mass, stiffness, 
conduction, etc.) following the maximum entropy concept and treating the corresponding 
matrix from the baseline model as a mean ROM. This approach represents a novel 
compromise between the modeling of uncertainty within the elements (e.g., by randomizing 
the elasticity tensor) on one end and at the level of a global ROM on the other. It brings some 
epistemic uncertainty not present in the former approach while retaining more local character 
than the latter one. 
Validations of this approach to a structural problem is carried out below. It is moreover 
demonstrated that the approach can be used to model the uncertainty in the elasticity tensor to 
relate element/nodal strains to their stress counterparts. 
 
MAXIMUM ENTROPY APPROACH FOR POSITIVE DEFINITE/SYMMETRIC 
MATRICES 
The original formulation of the maximum entropy approach focuses on symmetric positive 
definite matrices A for which it assumes that the mean A  is known. This limited information 
is not sufficient to uniquely define the joint probability density function of the elements of A, 
denoted as  aAp . Faced with this issue, Soize proposed in [2] that this joint probability 
density function be selected as the one that maximizes entropy S given the available 
information. That is,  aAp  should maximize 

            


 aaa AA dppS ln         (1) 

given that 

unit total probability:        1


aaA dp          (2) 

given mean:      Aaaa A 


dp          (3) 
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nonsingularity:        finitedetln 


aaa A dp        (4) 

where the domain of support  of the obtained probability density function is then such that 
the matrix A is positive definite, or equivalently that it admits a Cholesky decomposition, i.e.,  
 

                .,0
~

,,
~

:,...,1,,
~

;
~~  iiijij

T LjiLnjiLLLa .     (5) 

The probability density function  aAp  maximizing S given the constraints of Eqs (2)-(4) can 
be derived by calculus of variation and is found to be 

                        aaaA
TCp   ~trexpdet

~ 1                   (6) 

where C
~

 is the appropriate normalization constant to satisfy the normalization condition, Eq. 
(2) and  and  are the Lagrange multipliers associated with the constraints of Eqs (3) and (4), 
respectively. After a change of random variables, it is found that the matrices A of joint 
probability density function  aAp , Eq. (6), can be generated as 

          TT LHHLA               (7) 

where L  is any decomposition, e.g., Cholesky, of A, i.e.,  

              TLLA           (8) 
Moreover, H is a lower triangular matrix such that (see also Fig. 1) 
(1) its off-diagonal elements ilH , li , are normally distributed (Gaussian) random variables 

with standard deviation  2/1 , and 

(2) its diagonal elements iiH  are obtained as  /iiii YH  where iiY  is Gamma distributed 

with parameter    2/1ip  where 

      12 0  inip  and     2/12 0  n          (9) 

 
Figure 1. Structure of the random H matrices with n = 8, i =2, and 0 =1 and 10. 

In the above equations, n is the size of the matrices and the parameter 0 > 0 is the free 

parameter of the statistical distribution of the random matrices A. An alternative 
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parametrization is through the dispersion parameter   defined as 

                    
12

1

0

2





n

n
.                              (10) 

 
ELEMENTAL LEVEAL UNCERTAINTY MODELING 
As described in the introduction, the focus of the present effort is on developing an 
uncertainty modeling strategy at the level of the finite element. To this end, denote by K  an 
elemental matrix (stiffness, mass, conductance) of the baseline finite element. Next, assume 
that the only properties required for its uncertain counterpart K are that this matrix is positive 
definite, symmetric, and non-singular. Then, following the maximum entropy strategy, one 
can express 

          TT
KKKK LHHLK             (11) 

where KL  is a decomposition of K satisfying 

              T
KK LLK         (12) 

and KH  is a lower triangular matrix as defined in Fig. 1. The process could then be repeated 
for each element in turn. 
In applying the above concepts, there are two key issues which must be carefully addressed. 
The first one is that the matrices KH  corresponding to different elements cannot be 
simulated independently of each other. Doing so would induce very high spatial frequency 
variations which are unphysical. Rather, it is proposed here to adopt the matrix field modeling 
proposed in [7] which views each element ijH  as the transformation of a zero mean, unit 

variance Gaussian field ijP  with a specified stationary autocorrelation function 

           xxy  ijij PPER      xxy       (13) 

where x and x  denote  the coordinates of two elements (e.g., of their center). 
Specifically, for ij 
              ijij PH         (14) 

while for i = j 

           ijHii PFFH
ii

1        (15) 

where F is the cumulative distribution function of the standard Gaussian random variable and 
1
iiHF  is the inverse of the cumulative distribution function of the Gamma random variable 

iiH , see previous section. 

The correlation between random elemental matrices of neighboring finite elements implied by 
the above algorithm must be reflected on every component of the assembled matrix. That is, if 
a strong correlation is expected between two different finite elements, then there must exist a 
similarly strong correlation between the components of their elemental matrices which are 
added together in the construction of the global matrix. Since the matrix KH  is built from 

the independent fields ijP , this condition can be satisfied if: 

(1) the elemental matrices of the mean and uncertain models are expressed in the same (i.e., 
global) frame of reference, and 
(2) each simulated sample of the random global matrix is independent of the ordering of the 
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nodes in each element. 
This latter condition can be achieved as follows. 
(i) Organize the mean elemental matrices K  consistently with the ordering of its degrees of 
freedom as: degree of freedom 1 for all nodes, degree of freedom 2 for all nodes, etc. 

(ii) Adopt lower triangular (or block lower triangular) decompositions KL  to retain the same 
ordering of the degrees of freedom. 
(iii) Restrict the random matrices KH  so that each of their samples is invariant with respect 
to a permutation of the ordering of the nodes. This is achieved here by expressing 
      rK IHH         (16) 
where H is a mxm random matrix simulated as described in Eq. (13)-(15) where m is the 
number of degrees of freedom per node. Moreover, rI  denotes the rxr identity matrix where 
r is the number of nodes per element and   denotes the Kronecker product operation. 
Once the elemental matrix (or matrices) have been simulated for each element, the finite 
element model is reassembled and the response can be determined. Proceeding with a series 
of such simulations provides a population of responses from which statistics can be 
determined. 
 
APPLICATION EXAMPLE 
To illustrate the above uncertainty modeling, consider the annulus shown in Fig. 2(a) of inner 
radius 0.8m, outer radius 1m, thickness 0.002m clamped on its inner radius and free on the 
outer one. The material, aluminum, is assumed to be homogenous and isotropic with Young’s 
modulus E = 7.3 1010 Pa and Poisson’s ratio = 0.316. The annulus is subjected to a static 
uniform unit pressure in the quadrant [180,270] degrees highlighted in yellow in Fig. 2(a). 
To evaluate the displacement field of the annulus, it was modeled by 4-node shell finite 
elements within Nastran (CQUAD4 elements) with a mesh of 144 nodes around the periphery 
and 6 in the radial direction. Then, shown in Fig. 2(b) is the transverse displacement of the 
periphery which is clearly localized near the excitation, i.e., in the band [150,300] degrees. 
 

 
(a) 

 
(b) 

Figure 2. (a) The annulus and its finite element model with the loading domain highlighted in 
yellow. (b) Static transverse displacement at the periphery, full finite element (FEA) and 

reduced order (ROM) models. 
 

The autocorrelation function of [7] was selected here with a correlation length equivalent to 8 
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elements and a value  = 0.1 was adopted. Then, shown in yellow in Fig. 3(a) is the 
uncertainty band corresponding to the 5th and 95th percentile of the transverse displacement 
of the periphery as determined from the 300 samples of the response. The response is clearly 
localized as the one from the mean model. For comparison, shown in Fig. 3(b) is the 
uncertainty band generated by the approach of [14]. While a one to one comparison of the 
bands cannot be made as the methods involve different parameters, it is clear that the 
predictions are similar in all qualitative aspects. 
 

Figure 3. Static transverse displacement at the periphery of the mean annulus (in red) and 5th-
95th percentile uncertainty band from (a) the above uncertain finite element model, (b) [14]. 

The application of the above elemental uncertainty modeling approach to the strain-stress 
transformation will be discussed in the final version of the paper. 
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