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This paper presents a novel compositional multidisciplinary uncertainty analysis method-
ology for systems with feedback couplings, and model discrepancy. Our approach incorpo-
rates aspects of importance resampling, density estimation, and Gibbs sampling to ensure
that, under mild assumptions, our method is provably convergent in distribution. A key
feature of our approach is that disciplinary models can all be executed offline and inde-
pendently. Offline data is synthesized in an online phase that does not require any further
model evaluations or any full coupled system level evaluations. We demonstrate our ap-
proach on a simple aerodynamics-structures system.

I. Introduction

In response to progress in science and technology, demands on modern aerospace vehicles to have better
performance, higher reliability and robustness, and lower cost and risk are ever increasing [1]. This demand
has led to the development of highly coupled systems designed to exploit interactions among disciplines to
achieve greater performance. There is typically a great deal of uncertainty associated with such systems
due to potential new regimes of system behavior arising from unexpected multi-physics interactions. In
traditional design practice, to account for such uncertainties, constraints imposed on the design are often
reformulated deterministically, with pre-defined safety factors and margins, to ensure the reliability of a
design. This approach will typically result in an overly conservative design that cannot meet the demands
placed on today’s modern aerospace systems. Thus, there is a critical need for the development of advanced,
scalable technologies aimed at rigorously quantifying uncertainty in multi-physics aerospace systems.

Multidisciplinary uncertainty analysis of numerical simulation models entails the propagation of uncer-
tainty from model inputs to model outputs. Sources of uncertainty in such systems, as described in Ref. 2,
typically include parametric uncertainty, which involves uncertainty associated with model input parame-
ters, parametric variability, which generally refers to variation that cannot be controlled (e.g., operating
conditions), code uncertainty, which refers to the uncertainty associated with interpolating between known
system responses, and model discrepancy, which is uncertainty associated with the fact that no model is per-
fect. Often, multidisciplinary simulation capabilities are composed by integrating pre-existing disciplinary
physics-based models. For such composed multi-physics systems, the task of uncertainty analysis can be
challenging owing to the disciplinary models being managed by separate entities or housed in separate loca-
tions, analysis capabilities running on different computational platforms, models with significantly different
analysis run times, and the sheer number of disciplines required for a given analysis. Complex, multi-physics
systems also often exhibit feedback coupling (e.g., aeroelastic coupling in an aero-structural analysis of a
wing) that can have a substantial impact on system level uncertainty analysis results. Further, the coupled
nature of multi-physics systems necessitates an iterative uncertainty analysis procedure in traditional Monte
Carlo based system level uncertainty analysis approaches that can be computationally prohibitive.

To alleviate the computational burden of multidisciplinary uncertainty analysis in coupled systems com-
posed of integrated disciplinary models, we propose a probabilistic, sample-based compositional uncertainty
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analysis methodology. This work builds off of the work of Refs. 3 and 4, where a decomposition-based
uncertainty analysis methodology is developed for feedforward systems with parametric input uncertainty.
Recognizing that the disciplinary models composing the system are imperfect, our method takes into account
the model discrepancy associated with coupling variables in the system.

A key feature of our work is an offline/online approach to uncertainty analysis enabled by the composi-
tional nature of an integrated multidisciplinary system. Specifically, our approach is designed to use offline
independent uncertainty analysis results for each discipline of the composed system in an online synthesis
procedure. Offline results can be generated at any time (e.g., from a previous use of a disciplinary model)
and do not require knowledge of the specific input probability distributions that will be used in the composed
system level analysis. Further, the proposed online synthesis of offline data from the disciplinary models
does not require any coupled system level evaluations. The result is that the computational expense of
coupled multidisciplinary uncertainty analysis is moved offline, allowing for substantial gains in computa-
tional efficiency. The proposed methodology incorporates aspects of density estimation, Radon-Nikodym
importance weights, and ensemble Gibbs sampling to ensure convergence in distribution of system level un-
certainty analysis results under mild assumptions on the disciplinary models and probabilistic distributions.
We demonstrate our methodology on an aero-structural system adapted from Ref. 5.

The rest of the paper is organized as follows. Section II presents background on related work. In
Section III, the approach is described, which is followed by the presentation of our algorithm in Section IV.
In Section V, we present the results, and conclusions are drawn in Section VI.

II. Background

Previous work on multidisciplinary uncertainty analysis has focused on approximations such as surrogate
modeling and simplified representations of system uncertainty. The use of surrogates for disciplinary models
in a composed system can provide computational savings, as well as simplify the task of integrating compo-
nents [6]. Approximate representations of uncertainty, such as using mean and variance information in place
of a full probability distribution have been used to avoid the need to propagate uncertainty between disci-
plines. Such simplifications are commonly used in uncertainty-based multidisciplinary design optimization
methods as a way to avoid a system-level uncertainty analysis [1]. These approachs include implicit uncer-
tainty propagation [7], reliability-based design optimization [8], robust moment matching [9–11], advanced
mean value method [12], collaborative reliability analysis using most probable point estimation [13], and a
multidisciplinary first-order reliability method [14].

Other recent work has focused on exploiting the structure of a given multidisciplinary system. Ref. 15
present a likelihood-based approach to decouple feedback loops, thus reducing the problem to a feed-forward
system. Dimension reduction and measure transformation to reduce the dimensionality and propagate the
coupling variables between coupled components have been performed in a coupled feedback problem with
polynomial chaos expansions [16–18]. Coupling disciplinary models by representing coupling variables with
truncated Karhunen-Loève expansions, has been studied for multi-physics systems [19]. A hybrid method
that combines Monte Carlo sampling and spectral methods for solving stochastic coupled problems has also
been proposed by Refs. 20 and 21.

Our approach builds on the work of Refs. 3 and 4, where the challenges of uncertainty analysis for
feed-forward multidisciplinary systems were dealt with using a decomposition-based approach. As shown
notionally in Figure 1, the multidisciplinary uncertainty analysis is decomposed into individual discipline
level uncertainty analyses. These analyses are then assembled in a provably convergent manner to the desired
multidisciplinary uncertainty analysis results. Taking this approach leads to several benefits, such as enabling
offline disciplinary analyses to be conducted when suitable, enabling concurrent evaluation of the disciplinary
models for online uncertainty analysis, avoiding the challenges of integrating various disciplinary models that
may have been created on different computational platforms, and being consistent with many organizational
structures. In the work presented here, we extend the methodology of Ref. 4 to handle feedback coupling
between disciplines, as well as model discrepancy associated with each discipline. This concept is presented
notionally in Figure 2, where a two-discipline system is represented. We note that here we use the term
compositional rather than decompositional to stress the concept of integrating a set of information sources
rather than beginning with a monolithic system that is to be decomposed.

In this example, each discipline takes as input, an output from the other discipline. The output of each
discipline has additive model discrepancy associated with it, denoted by δ1 and δ2 for discipline 1 and 2
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Figure 1: The decomposition-based feed-forward multidisciplinary uncertainty analysis method of Ref. 4. The method
decomposes the problem into manageable components and synthesizes the system level uncertainty analysis without needing to
evaluate the system in its entirety. f1, f2 and f3 are the input-output functions associated with each component.

Figure 2: A depiction of the concept of a compositional multidisciplinary uncertainty analysis approach for a two-discipline
system with model discrepancy and feedback coupling. Here, f1 and f2 are the model functions, X1, X2 and Y1, Y2 are the
inputs and outputs of the respective disciplines, and δ1 and δ2 are the additive model discrepancies associated with the outputs.
The approach composes disciplinary uncertainty analysis results without needing to evaluate the coupled system.

respectively. We discuss this source of uncertainty in more detail in the following section. We note here
that it is this source of uncertainty that necessitates an iterative approach to uncertainty quantification
as discussed in Ref. 10, which leads to substantial computational expense for multidisciplinary uncertainty
analysis.

III. Approach

We first present how we characterize model discrepancy. We then provide an overview of our composi-
tional multidisciplinary uncertainty analysis, followed by a discussion of the methodological key ingredients
of importance resampling and Gibbs sampling. We also discuss the use of effective sample size as a heuristic
indicator of the quality of a proposal distribution and as a means of identifying stationarity.

A. Model Discrepancy Characterization

Model discrepancy arises because mathematical models of reality are not perfect, and thus, some aspects of
reality may have been omitted, improperly modeled, or contain unrealistic assumptions. Following Ref. 2,
we represent model discrepancy as an additive stochastic process. For example, if we have a model that
consists of a function f(x), where x is an input vector to the model, and reality is denoted as fr(x), then
the model discrepancy of the model can be represented as

δ(x) = fr(x)− f(x), (1)
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where here we are assuming there are no parameters in the model to be calibrated. Typically, we will have
available experimental data of reality (which will contain experimental variability), which can be used to
create a stochastic process representation for δ(x). In this work, we assume that model discrepancy has been
quantified previously for all available disciplinary models in the form of Gaussian processes. Thus, we add
the Gaussian process model discrepancy term to the output of a disciplinary model, as shown notionally in
Figure 2. For example, for Discipline 1 in Figure 2, we have

Y1(x) = f1(x) + δ1(x), (2)

where δ1(x) is the Gaussian process representation of the model discrepancy of Discipline 1 and Y1(x) is
the estimate of reality from Discipline 1 with quantified model discrepancy. In this work, without loss of
generality, we focus on discrepancies that are not a function of an input.

B. Overview

Our proposed compositional multidisciplinary uncertainty analysis approach for systems with feedback cou-
pling, and model discrepancy, consists of an offline and online phase. To make the discussion more concrete
but without loss of generality, we develop the aspects of the approach with the system presented in Figure 2
in mind. We begin offline, by performing uncertainty analysis independently for each discipline of the system.
To do this, we must propose distributions for inputs for each discipline, since we do not know the distribu-
tions of the coupling variables in advance. We define theses distributions as proposals which are represented
by πX1 and πX2 . This process is shown notionally in Figure 3. As it is shown, the samples generated from
the proposal distributions are propagated through the disciplines with functions f1 and f2 to generate the
corresponding samples of the discipline outputs. The underlying densities of the output samples are then
approximated as πY1

and πY2
using a density estimation technique such as kernel density estimation [22].

Figure 3: A depiction of the offline uncertainty analysis process adapted from Ref. 4. Here, πX1 , πX2 , πY1 , and πY2 are the
densities associated with the inputs (proposals) and outputs of the respective disciplines.

The online process consists of a Gibbs sampling procedure that is enabled by iteratively re-weighting
the samples generated offline for each discipline through a combination of density estimation and sequential
importance resampling. The use of importance weights allows us to change underlying input probability
distributions to each discipline. These weights can then be used on the output probability distributions of
each discipline. The weighted output distributions converge in distribution to the output distributions that
would have resulted from the modified input probability distributions sampled from in the first place. The
overall online process is presented notionally in Figure 4 for the system presented in Figure 2. Here, we are
assuming that each discipline contains model discrepancy, and the output of the systems (e.g., the quantity of
interest) is the joint distribution of the coupling variables. Our online process evolves this joint distribution
iteratively via Gibbs sampling of the conditional densities. For example, in Figure 4, we begin with the
joint distributions πX1|Y2

, πY1|X1
, πX2|Y1

, and πY2|X2
. The initial distribution assumed for each conditional

distribution is given by the offline uncertainty analysis. From these proposed distributions (πX1
and πX2

),
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some samples are drawn to pass through each discipline independently to produce the initial samples from
the target distributions (πY1|X1

and πY2|X2
). In the online process, the joint distribution of each conditional

distribution is updated sequentially and iteratively using Radon-Nikodym importance weights. To do so, we
re-weight and update the samples from πX1|Y2

and πX2|Y1
followed by a density estimation technique and

using the ratio of densities of target and proposal distributions as the Radon-Nikodym weights. By sequential
importance resampling, πX1|Y2

and πX2|Y1
match πY2|X2

and πY1|X1
respectively, so the target distributions

are simulated and propagated without rerunning the model online. This iterative process results in the
convergence in distribution of the joint distribution of Y1 and Y2 as the number of iterations grows. Hence,
the joint distribution of the two sources of uncertainty in the system is recovered without ever performing a
coupled system level analysis.

Figure 4: A depiction of the online uncertainty analysis process. We note here that the models f1 and f2 are not actually
executed in the online process. Instead, the Radon-Nikodym importance weights found for re-weighting the input proposal
distribution are passed on to the output distributions.

C. Importance Weights and Density Estimation

A key ingredient of our online approach is the iterative re-weighting of offline sample information. We achieve
this using sequential importance resampling [23]. We use this method as follows. Consider a bivariate density
of the random variables Y1 and Y2 and assume we have sampled from a bivariate normal distribution where
Y1 ∼ N (0, 2), Y2 ∼ N (0, 2), and the random variables are independent. Contours of this density are shown
in red on the left in Figure 5 and samples of this distribution are shown with red dots on the same figure.
These samples could then be propagated through a model, say f(Y1, Y2) to compute statistics of interest
such as the expectation, E[f(Y1, Y2)]. Now suppose that instead of the distribution represented by the red
contours on the left in Figure 5, we wished to compute the expectation of f(Y1, Y2) with Y1 and Y2 distributed
jointly according to the distribution represented by the blue contours on the left in Figure 5. A traditional
approach would require sampling from this distribution and then propagating these samples through the
model. However, importance resampling, which is based on the Radon-Nikodynm theorem [24], allows us
to compute this information by simply re-weighting the samples from the original distribution, which we
can then resample from with replacement. The concept is demonstrated in Figure 5, where Radon-Nikodym
importance weights are used to re-weight the samples given by the red dots on the left figure. The result
is the blue dots on the right figure, where the size of the dots denotes the relative weights given to the
samples. These weights are the Radon-Nikodym derivatives of the desired distribution with respect to the
original distribution evaluated at the original sample points. Mathematically, if we wished to compute the
expected value of some function f(Y1, Y2) using the density represented by the blue contours but had only
samples of the density represented by the red contours, we would proceed as follows. Referring to the original
distribution as the proposal distribution and denoting its density by p(Y1, Y2) and referring to the desired
distribution as the target distribution and denoting its density by q(Y1, Y2), the expected value of f(Y1, Y2)
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Figure 5: The importance resampling process uses the realizations shown by red dots on left figure, generated from a proposal
distribution P (Y1, Y2) (corresponding density shown as red solid contour on left figure) to approximate a target distribution
Q(Y1, Y2) (blue dash contour on left figure), by weighting the proposal realizations shown by blue dots on right figure (adapted
from Ref. 4).

with respect to the target distribution is given as

EQ[f(Y1, Y2)] =

∫
P

q(Y1, Y2)

p(Y1, Y2)
f(Y1, Y2)p(Y1, Y2)dY , (3)

where P is the support of the proposal density and the target distribution is absolutely continuous with
respect to the proposal distribution. We can evaluate this integral with Monte Carlo simulation as

EQ[f(Y1, Y2)] ≈ 1

N

N∑
i=1

f(Y i1 , Y
i
2 )
q(Y i1 , Y

i
2 )

p(Y i1 , Y
i
2 )
, (4)

where the samples {Y i1 , Y i2 } are drawn from the proposal distribution (i.e., the red contours in Figure 5). This
is the key aspect of the method. The proposal samples are propagated through a model offline. Online, we re-
weight these samples so as to simulate a target distribution being propagated through a model. Importance
resampling allows us to achieve this simulation without rerunning the model online. We note here that we
do sequential importance resampling (sampling from the discrete distribution given by the Radon-Nikodym
importance weights) followed by a density estimation technique to update the joint densities in the online
process. This is required because the Radon-Nikodym weights are density ratios.

D. Effective Sample Size

As noted in Section IIIB, since we do not know the joint distributions of the coupled variables in advance,
we need to propose distributions for the inputs of each discipline. These proposal distributions come from
the previous knowledge about the system, and can impact the convergence performance of the compositional
multidisciplinary uncertainty analysis approach. In general, we cannot evaluate the quality of the proposal
distributions before executing the approach; but after knowing the importance weights, we can do so by
computing the effective sample size as

neff =
1∑N

i=1(w(xi))2
, (5)

where N is the number of samples and w(xi) is the normalized importance weight assigned to the proposal
sample xi [25–27]. The effective sample size ranges from neff = 1 to neff = N . We have neff = N when all
the samples have the same weights ( 1

N ), so the proposal and target distributions are equal to each other,
while neff = 1 shows that the weight of all the samples except one sample is 0. Thus, effective sample size
is often used as a heuristic for determining when the proposal distribution adequately captures the target
distribution [28]. We take this approach here as discussed in Section IV, where we also consider the use of
an unchanging effective sample size as a heuristic indicator of stationarity in a target distribution.
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E. Gibbs Sampling

The second key ingredient of our approach is Gibbs sampling. The presence of model discrepancy in a
multidisciplinary system with feedback coupling requires the addition of that model discrepancy iteratively.
That is, considering the system in Figure 2, if we first evaluate Discipline 1 (with an initial estimate of the
input to this discipline from Discipline 2), we have an estimate of the output of Discipline 1 that feeds into
Discipline 2. To this output, we add the discrepancy term denoted by δ1 in the figure. Discipline 2 can then
be evaluated and to its output that feeds back into Discipline 1, we must add the discrepancy term denoted
by δ2 in the figure. This process must be repeated until some form of convergence is achieved. Here, the
convergence we require is convergence in distribution. That is, we require an iterative process that, when
enough iterations have occurred, the joint distribution of the coupling variables is stationary. One method
for achieving this is through the use of Gibbs sampling.

Gibbs sampling was first described by Ref. 29 and has also been referred to as successive substitution
sampling [30]. It is a Markov chain Monte Carlo based method for generating samples from a joint distribution
that cannot be directly sampled. Following Refs. 30 and 31, suppose we have random variables (which
can be vector-valued) Y1, . . . , Yk, and we wish to generate samples from the joint distribution of those
random variables, which we denote as πY1,...,Yk

. Assume we have a complete set of conditional distributions,
πYi|{Yj ,j 6=i} for i = 1, . . . , k, available for sampling. Then, starting from some initial arbitrary set of values,

y
(0)
1 , . . . , y

(0)
k , where the superscript denotes the iteration number of the Gibbs sampler, we draw a sample

y
(1)
1 from π

Y1|Y2=y
(0)
2 ,...,Yk=y

(0)
k

. We then draw a sample y
(1)
2 from π

Y2|Y1=y
(1)
1 ,Y3=y

(0)
3 ,...,Yk=y

(0)
k

, and continue

in this manner up to yk from π
Yk|Y1=y

(1)
1 ,...,Yk−1=y

(1)
k−1

, which completes one iteration of the Gibbs sampler.

After m iterations we obtain (y
(m)
1 , . . . , y

(m)
k ). For continuous distributions, Ref. 30 has shown, under mild

assumptions, that this k-tuple converges in distribution to a random observation from πY1,...,Yk
as m→∞.

To demonstrate the applicability of Gibbs sampling to multidisciplinary uncertainty analysis, consider

again the system shown in Figure 2. Let y
(0)
1 be an initial estimate from Discipline 1, where an arbitrary

estimate from Discipline 2 has been assumed. We can then propagate this sample through Discipline 2,

which generates a sample from the conditional distribution, π
Y2|Y1=y

(0)
1

, which we denote as y
(1)
2 . We can

then propagate this sample through Discipline 1 to generate a sample from the conditional distribution

π
Y1|Y2=y

(1)
2

, and so on. By repeating this process many times, we ensure that our random sample, (y
(m)
1 , y

(m)
2 )

converges in distribution to a random observation from the true joint distribution of Y1 and Y2.
For our compositional multidisciplinary uncertainty analysis approach and the system represented by

Figures 2 and 4, we perform Gibbs sampling over the conditional joint distributions of X1|Y2, Y1|X1, X2|Y1,
and Y2|X2. We begin with initial distributions, π

X
(0)
1
, π
Y

(0)
1
, π
X

(0)
2

, and π
Y

(0)
2

, which were generated offline.

We then use Radon-Nikodym importance weights from the ratio of π
Y

(0)
2

to π
X

(0)
1

to generate the distribution

π
X

(1)
1 |Y

(0)
2

as well as π
Y

(1)
1 |X(1)

1
. We can then use Radon-Nikodym importance weights from the ratio of π

Y
(1)
1

to π
X

(0)
2

to generate the distribution π
X

(1)
2 |Y

(1)
1

and π
Y

(1)
2 |X(1)

2
, which completes one iteration of the importance

weighted Gibbs sampler.

IV. Compositional Multidisciplinary Uncertainty Analysis

We present here our compositional multidisciplinary uncertainty analysis algorithm. We also provide a
discussion on the convergence properties of our approach.

A. Algorithm

Our proposed compositional multidisciplinary uncertainty analysis method for coupled systems with model
discrepancy is presented in Algorithm 1. The data necessary for this algorithm are the samples generated from
the proposal distributions as inputs and the output samples of each discipline obtained independently in the
offline process. We represent the number of samples and the number of disciplines as N and Nd respectively.
Since this approach is based on samples, to be able to compute the importance weights, we need to estimate
the densities of the inputs, πX , and outputs, πY , of the disciplines. The algorithm starts from the first
discipline, and computes the unnormalized weights (wuni,j ) for each sample of disciplines ({xi,j}j=1,...,Nd

i=1,...,N ) as

wuni,j =
πYj−1

(xi,j)

πXj
(xi,j) , which is the ratio of the target input density (output from the upstream discipline) and the
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proposal input density computed at each sample previously simulated from the proposal input distribution.
After assigning weights to all the samples, N samples are drawn with replacement from the output samples,
and the model discrepancy corresponding to the current discipline is added to the importance resampled
samples. From these updated samples, the probability density of the output, which is the new target input
distribution for the downstream discipline, is updated. To compute the effective sample size, we need to
normalize the weights assigned to the samples to sum to unity. After repeating these steps for all the
disciplines, one iteration of the Gibbs sampler is completed, and M , which represents the number of Gibbs
iterations and is initialized to 0, is updated to M + 1. The algorithm stops when the relative difference

between the effective sample size in the current Gibbs iteration and the previous one, |n
j
eff(M)−nj

eff(M−1)

nj
eff(M)

|, for

all the disciplines is less than a user-defined threshold (ε), which shows that the approach has converged to
a stationary joint distribution of the coupling variables.

Algorithm 1: Compositional Multidisciplinary Uncertainty Analysis.

Data: Offline sample sets of inputs {xi,j}j=1,...,Nd

i=1,...,N and outputs
{
yi,j
}j=1,...,Nd

i=1,...,N
obtained from offline

Monte Carlo based individual discipline analyses.
Result: The joint distribution of outputs of all the disciplines {Yj}j=1,...,Nd

and their statistics.
Parameters: N = number of samples; Nd = number of disciplines; M = number of Gibbs iterations;

δj = additive model discrepancy of discipline j; neff = effective sample size; ε =
user-defined threshold for the iteration stopping criterion; wuni,j = unnormalized weights;
wi,j = normalized weights

Initialize input and output distributions of {Xj}j=1,...,Nd
(πXj

) and {Yj}j=1,...,Nd
(πYj

) using offline
sample sets, and M = 0.
while max

j∈{1,...,Nd}
(εj) > ε do

for j = 1 : Nd do
for i = 1 : N do

if j = 1 then

wuni,j =
πYNd

(xi,j)

πXj
(xi,j)

else

wuni,j =
πYj−1

(xi,j)

πXj
(xi,j)

end

end

end
Importance resample from the discrete distribution given by the computed weights.
Add the model discrepancy associated with the current discipline (δj) to the respective
importance resampled samples.
Update the probability density of Yj (πYj

) from the updated samples.
Normalize the unnormalized weights

{
wuni,j

}
to obtain the normalized weights {wi,j}i=1,...,N .

njeff(M) = 1∑N
i=1(wi,j)2

εj = |n
j
eff(M)−nj

eff(M−1)

nj
eff(M)

|
end
M = M + 1

end

B. Convergence Analysis

In this section we discuss the convergence properties of our proposed compositional multidisciplinary un-
certainty analysis method. Convergence results from applications of the law of large numbers, Skorokhod’s
representation theorem, and the convergence of kernel density estimation, importance weighted empirical
distributions, and the Gibbs sampler.

In the offline process of the compositional multidisciplinary uncertainty analysis method, we perform
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Monte Carlo analysis and generate samples from the input proposal distributions of each discipline. The
convergence of these input proposal samples to their respective input proposal distributions follows from the
law of large numbers [32]. From the generated input samples, we obtain the output samples independently for
each discipline, so the output variances and other distributional quantities can similarly be estimated using
Monte Carlo simulation results. By assuming that the function model of each discipline, fj , is bounded and
continuous, then as an application of Skorokhod’s representation theorem, the output empirical distribution
converges to the true output proposal distribution of each discipline [32].

In the online process of the compositional multidisciplinary uncertainty analysis method, we use impor-
tance sampling to weight the proposal samples, so as to approximate the target input distribution, using
the samples previously simulated from the proposal input distributions. The convergence of the sampling
and importance resampling (SIR) algorithm is discussed in Ref. 23. To apply SIR, we need to estimate
the proposal and target densities from the corresponding samples to compute the importance weights. By
using a kernel density estimation method that is strongly uniformly convergent [33,34], we obtain pointwise
estimates of the densities where we are ensured to converge pointwise as the number of samples increases
to the true density [35]. Then, by an application of Skorokhod’s representation theorem [32], the weighted
empirical output proposal distribution converges to the true output target distribution. As can be seen in
Figure 4, these target distributions are conditional distributions for each coupling variable conditioned on all
other coupling variables. Hence, iteratively sampling via the process of re-weighting offline samples consti-
tutes a Gibbs sampling process, which has been shown to converge under certain conditions (i.e., compatible
conditional distributions) to samples from the true joint distribution of the coupling variables [36].

Thus, our proposed compositional multidisciplinary uncertainty analysis approach can perform the un-
certainty analysis for coupled systems with model discrepancy in a provably convergent manner under mild
assumptions on the disciplinary functions and the model discrepancy terms.

V. Application

We present here a demonstration of the effectiveness of our proposed compositional multidisciplinary
uncertainty analysis approach. The application system of interest is adapted from Ref. 5. The application
is discussed followed by the description of the results.

A. A Simple Aerodynamics-Structures System

The example problem we use to demonstrate our method is a two-dimensional airfoil in airflow from Ref. 5
and shown in Figure 6. As described in Ref. 5, the airfoil is supported by two linear springs attached to a

Figure 6: Simple coupled aerodynamics-structures system adapted from Ref. 5.

ramp. The airfoil is permitted to pitch and plunge. The lift, L, and the elastic pitch angle, φ, are the coupling
variables and also the outputs in this system. A complete description of the problem can be found in Ref. 5
and for the sake of completeness, the equations and variable values are presented in the appendix. A block
diagram of the system is shown in Figure 7, where the model discrepancies we consider are highlighted. For
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this demonstration, we assume δ1 ∼ N (0, 250) (N) and δ2 ∼ N (0, 1e − 6) (rad), where N (µ, σ2) represents
a normal distribution with mean µ and variance σ2. Our objective then is to correctly estimate the joint
distribution of L and φ using our compositional multidisciplinary uncertainty analysis methodology.

Figure 7: Block diagram of the simple coupled aerodynamics-structures system adapted from Ref. 5 showing the model
discrepancies considered. L is the lift and φ is the elastic pitch angle.

B. Results

In this section, we present the results of our compositional multidisciplinary uncertainty analysis (CUA) ap-
proach applied to the simple aerodynamics-structures system. We present a comparison to brute force Monte
Carlo simulation results, the evolution of the joint distribution of L and φ using our compositional multi-
disciplinary uncertainty analysis methodology, and convergence results for both increasing Gibbs iterations
and increasing sample size for statistics of interest.

The Monte Carlo results that we compare our methodology to consisted of generating 100,000 samples
from the joint distribution of L and φ using Gibbs sampling. The Gibbs sampler underwent 15 iterations
for each sample, thus the models were evaluated 1,500,000 times each. Our compositional multidisciplinary
uncertainty analysis approach used 200,000 offline evaluations of each model independently. For the aero-
dynamics model of the example problem, an input distribution of φ ∼ N (0.017, 4e − 6) was used as the
proposal. For the structures model, the independent input distribution, L ∼ N (500, 400), was used as the
proposal. We stress here that these proposals were completely independent (that is, all off-diagonal terms
in the covariance matrix of the joint distribution of the variables were zero), and that the offline evaluations
of the aerodynamics and structures models were run in isolation of each other. That is, there was never any
coupled system evaluation conducted offline.

Statistics of the joint distribution of L and φ are presented in Table 1 for both the full Monte Carlo
simulation approach (MCS) and the compositional multidisciplinary uncertainty analysis (CUA) approach
proposed here. The results demonstrate the mean, variance, covariance, and correlation coefficient of the

Table 1: Quantities of interest computed in MCS and CUA methods

Variable MCS CUA

µL 502.0265 502.0563

σ2
L 352.2087 353.0435

µφ 0.0176 0.0176

σ2
φ 1.4240e− 06 1.4318e− 06

cov(L, φ) 0.0122 0.0123

cor(L, φ) 0.5447 0.5476

joint distribution are being estimated well by our approach. The joint distribution of the variables using
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each method is shown in Figure 8 as contour plots. The left side of the plot is the MCS result whereas
the right side is the result of our approach. Graphically it is clear that our method has captured the joint
distribution of interest. This was achieved without any online evaluations of either model separately or as
a coupled system. Thus, the online cost of using our method to propagate uncertainty through this system
was negligible, whereas the MCS approach incurred substantial computational cost.

Figure 8: Joint distributions represented with contour plots for both the MCS and CUA methods. The MCS approach used
1,500,000 samples and the CUA approach used 200,000.

Figure 9 shows the evolution of the joint distribution of L and φ using our proposed approach after
one, three, and five Gibbs iterations. Red samples are generated from the proposal distributions shown as
red solid contours which are re-weighted to capture the evolving target distribution, shown as blue dashed
contours, and the weighted samples are shown in blue dots in the plots below the distributions.

M = 1 M = 3 M = 5

Figure 9: Evolution of the joint distribution of L and φ using our proposed approach after one, three, and five Gibbs iterations.
Red samples are generated from a proposal distribution shown as red solid contours which are re-weighted (weighted blue dots
in below plots) to capture the evolving target distribution, shown as blue dashed contours.

To demonstrate the convergence of the joint distribution of L and φ obtained using our compositional
methodology, we compute the Cramer von-Mises criterion [37] between our empirical joint distribution and
that recovered by brute force Monte Carlo simulation. The Cramer von-Mises criterion is defined as

ω =

∫ +∞

−∞
[Fn(x)− F ∗(x)]2 dF ∗(x), (6)
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where Fn and F ∗ are the cumulative distribution functions of the empirical distribution and a desired
distribution, respectively. Figure 10 presents the Cramer von-Mises criterion as a function of the number of
offline samples used in our approach averaged over 100 independent simulations. Also, the effective sample
size is shown as a function of the number of offline samples averaged over the 100 independent simulations.
The results show that the Cramer von-Mises criterion converges with the number of samples, and the rate
of convergence is 1/N , where N is the number of samples, which is expected based on the dependence of our
convergence analysis on the law of large numbers.

Figure 10: Average Cramer von-Mises criterion and effective sample size over 100 runs of the CUA approach as a function of
the number of offline samples.

Certain quantities of interest, such as means, variances, and the covariance of the joint distribution
of L and φ also converge to their true values as shown in the following numerical results. We compute

the expected value of the relative error of the mean and variance estimates as, E[
|µ̂q−µq|
µ̂q

] and E[
|σ̂2

q−σ
2
q |

σ̂2
q

]

respectively, in which q refers to L or φ. The expected value of the relative error of the covariance of L

and φ is computed as, E[ | ˆcov(L,φ)−cov(L,φ)|
ˆcov(L,φ) ]. The expectation is computed as the average of 100 independent

uncertainty analysis trials. The mean and variance, µ̂q and σ̂2
q , are obtained using the full Monte Carlo

simulation uncertainty analysis results, and µq and σ2
q , are the mean and variance estimates (for L and φ)

obtained from the compositional multidisciplinary uncertainty analysis approach. To assess the quality of
the proposal distributions, we compute the effective sample size once the target distribution is known after
each Gibbs iteration. Figure 11 shows the expected error in estimating the covariance of L and φ, and also
the effective sample size as the number of Gibbs iterations increases. As it is seen, in this particular example,

Figure 11: Average effective sample size and the expected value of the relative error of the covariance of L and φ using the
CUA method with 200,000 samples and averaged over 100 runs versus the number of Gibbs iterations.
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the joint distribution is captured after a few Gibbs iterations. As shown in the figure, the effective sample
size and relative error in the covariance estimate level off around the same number of Gibbs iterations. As
discussed in Section IV, we use the leveling off of the effective sample size as a heuristic to indicate that our
approximation of the target distribution is stationary. In this situation, the only mechanism for obtaining a
better estimate of the target is the introduction of more samples, which is a topic of future work.

Figure 12 shows the expected value of the relative error of the means and variances of L and φ, as well
as the effective sample size as the number of offline samples increases. The results show that our proposed
approach is effectively estimating the statistics of L and φ.

Figure 12: Average effective sample size and expected value of the relative error of the mean and variance of L and φ computed
using our approach averaged over 100 runs versus number of samples on a logarithmic scale

VI. Conclusion

This paper has presented a compositional multidisciplinary uncertainty analysis methodology. The ap-
proach was motivated by the fact that often, multidisciplinary simulation capabilities are composed by
integrating pre-existing disciplinary physics-based models. For such composed multi-physics systems, the
task of uncertainty analysis can be challenging owing to the disciplinary models being managed by separate
entities or housed in separate locations, analysis capabilities running on different computational platforms,
models with significantly different analysis run times, and the sheer number of disciplines required for a given
analysis. Further, it is also often the case for such systems to exhibit feedback couplings, which can lead
to computationally prohibitive expense for uncertainty analysis tasks. Thus, there is a need to alleviate the
computational burden of multidisciplinary uncertainty analysis in coupled systems composed of integrated
disciplinary models. We have achieved this by moving most of the computational expense of multidisciplinary
uncertainty analysis to an offline phase, that can be conducted whenever there is the opportunity to do so.
The key advantage of our approach is that there is no need to do system level uncertainty analysis, and all the
disciplinary analyses can be performed independently in the offline process. Offline data is used in an online
process that does not require any further model evaluations or any system level analysis. We demonstrated
our approach on a coupled aerodynamics-structures system with model discrepancies. In future research,
we will extend our approach to systems with parametric uncertainty. We will also investigate methods for
adaptively introducing new samples online, for situations where proposals are inadequately capturing targets.
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Appendix

Aerodynamics-Structures System

Aerodynamics Model

L = q.S.CL
θ = φ+ ψ
CL = uθ + r[1− cos[(π/2)(θ/θ0)]]

Structures Model

R1 = L/(1 + p) R2 = Lp/(1 + p)
d1 = R1/k1 d2 = R2/k2

φ = (d1 − d2)/[C.(z̄2 − z̄1)]

Data

z̄1 = z1/C z̄2 = z2/C ā = a/C
h̄1 = ā− z̄1 h̄2 = z̄1 − ā p = h̄1/h̄2

S = B.C
B = 100 cm; C = 10 cm; z̄1 = 0.2; z̄2 = 0.7
k1 = 4000N/cm; k2 = 2000N/cm
ā = 0.25; q = 1N/cm2; θ0 = 0.26 rad; ψ = 0.05 rad
u = 2π; r = 0.9425
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