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ABSTRACT
Computational models for numerically simulating physical

systems are increasingly being used to support decision-making
processes in engineering. Processes such as design decisions,
policy level analyses, and experimental design settings are of-
ten guided by information gained from computational model-
ing capabilities. To ensure effective application of results ob-
tained through numerical simulation of computational models,
uncertainty in model inputs must be propagated to uncertainty in
model outputs. For expensive computational models, the many
thousands of model evaluations required for traditional Monte
Carlo based techniques for uncertainty propagation can be pro-
hibitive. This paper presents a novel methodology for construct-
ing surrogate representations of computational models via com-
pressed sensing. Our approach exploits the approximate addi-
tivity inherent in many engineering computational modeling ca-
pabilities. We demonstrate our methodology on an analytical
function and a cooled gas turbine blade application. The results
of these applications reveal substantial computational savings
over traditional Monte Carlo simulation with negligible loss of
accuracy.

1 INTRODUCTION
Increasingly, computational models of physical systems are

being used to support decision-making processes. These pro-
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cesses include design decisions, policy level analyses, and exper-
imental design decisions among other things. Typically, compu-
tational models have uncertainty associated with their inputs and
parameters, which subsequently propagates through the model,
begetting uncertainty in the outputs, or quantities of interest, the
model estimates. Therefore, the application of model output in-
formation to support decision-making processes requires the ef-
fective propagation of uncertainty. The process of propagating
uncertainty from model inputs to model outputs could be con-
ducted, for example, via Monte Carlo simulation, but this ap-
proach traditionally requires several thousand model evaluations.
However, computational models of physical systems of practical
use in engineering decision-making processes are often expen-
sive in terms of the time it takes to compute a set of outputs
given a set of inputs. Therefore, conducting several thousand
model evaluations for something like Monte Carlo simulation, is
often computationally intractable.

For the case of computationally expensive models, recourse
is often made to surrogate modeling techniques, both through
approximations of the underlying physics of the modeling ca-
pability, and the underlying uncertainty of the model inputs.
We present here, a novel surrogate modeling approach for un-
certainty propagation constructed from the powerful concept of
compressed sensing. Given a functional basis representation for
which the output of a computational model is sparse, we demon-
strate that we can recover near-exact approximations of the com-
putational model as a function of its inputs with remarkably few

Proceedings of the ASME 2016 International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference 

IDETC/CIE 2016 
August 21-24, 2016, Charlotte, North Carolina 

DETC2016-60195

1 Copyright © 2016 by ASME



function evaluations. The surrogate representation of the model
can then be used with any supported probability distribution to
provide rapid uncertainty propagation results.

Our approach is specifically catered to the class of what we
refer to as approximately additive functions. By this, we mean
functions that depend primarily on additive terms of subfunctions
of low dimension. For example, a function of many inputs may
be adequately represented by a sum of subfunctions of each in-
dividual input and a few subfunctions of two input combinations
(i.e., interaction terms). As discussed in the following section,
this approximately additive characteristic is believed to be a fea-
ture of a wide-variety of computational models often used for
engineering purposes.

This paper proposes a systematic method to apply com-
pressed sensing to approximately additive functions to generate
surrogate models for use in uncertainty propagation at a fraction
of the cost of traditional Monte Carlo simulation. Our method in-
cludes a greedy approach to determining which subfunctions of
a given computational model to interrogate for inclusion based
on approximate main effect global sensitivity indices. We esti-
mate these indices using the current subfunctions in the surro-
gate representation. Our method also incorporates a randomized
cross validation-based error measure to monitor convergence of
the surrogate model estimates to the full computational model
estimates. In this work, we assume a polynomial basis represen-
tation is sufficient to identify a sparse representation of a given
computational model. It is a topic of future work to identify ap-
propriate functional bases for general computational models. We
demonstrate our methodology on an analytical test problem, as
well as a finite element model of a gas turbine blade with cooling
channels. In Section 2, we provide background on the state of
the art in uncertainty propagation, the mathematical concept of
an additive function, and on compressed sensing. In Section 3,
we describe our methodology for constructing a sparse surro-
gate approximation of a computational model. In Section 4, we
demonstrate our approach on an analytical model and the cooled
gas turbine blade. Conclusions and topics for future work are
then discussed in Section 5.

2 BACKGROUND
Uncertainty propagation, in the context of computational

modeling, involves mapping the uncertainty in the inputs to un-
certainty on the outputs of the computational model. Without
loss of generality, we will deal with computational models that
yield a single output, or single quantity of interest. The process
of mapping uncertainty from inputs to model output often in-
volves a sample-based approach to gathering input settings that
are then either mapped through the full computational model by
evaluating the model output at each input setting, or are mapped
through an approximation, or surrogate model, of the computa-
tional model.

The most basic and most common approach to propagating
uncertainty through computational models is via Monte Carlo
simulation. For a general computational model, f (X), where
X= (X1,X2, . . . ,Xd)

T , and the X is a random vector, Monte Carlo
simulation works by sampling a point x, from the distribution of
X, and then running the computational model to evaluate f (x).
If this process is repeated several times (usually thousands), then
the strong law of large numbers guarantees that the empirical dis-
tribution of the output evaluations converges almost surely to that
of f (X) [1]. That is

F̂n(t) =
1
n

n

∑
i=1

1i(t)
a.s.−−→ F(t) as n→ ∞, (1)

where F̂n is the empirical distribution of f (X) generated by sam-
pling, F is the cumulative distribution function of f (X), 1i(t) is
the indicator function for the event, {xi

j ≤ t j,∀ j ∈ {1,2, . . . ,d}},
where xi

j is the i-th sample of the j-th input. Given this conver-
gence property, Monte Carlo simulation, with enough input sam-
ples, is often considered the gold standard to compare against
when developing new algorithms for uncertainty propagation. It
has also seen wide use in many engineering and scientific ap-
plications [2–8]. However, the convergence rate, which is gov-
erned by the central limit theorem, is O(1/

√
n), thus making the

method impractical for most expensive computational models for
uncertainty propagation [9].

To improve upon the convergence performance of traditional
Monte Carlo simulation, different sampling strategies have been
studied and applied, such as quasi-Monte Carlo methods, strati-
fied sampling, and Latin hypercube sampling [10]. Quasi-Monte
Carlo methods are built off the use of low discrepancy sequences,
which are designed to fill the input space as uniformly as possi-
ble (i.e., with low discrepancy) [11]. Convergence of these meth-
ods is O((logn)d/n), and is thus generally superior to traditional
Monte Carlo simulation when the number of inputs, d, is not
too large. Latin hypercube sampling, or LHS [12] operates by
sampling on what is referred to as a Latin hypercube, which re-
quires each sample to be the only sample in each hyperplane it
belongs to in the hypercube. Stratified sampling proceeds by
placing samples in certain subsets, or strata, in a sample space,
and then weighting these points by the probability of being in that
particular stratum. Convergence rates of Latin hypercube and
stratified sampling methods tend to be superior to Monte Carlo
simulation for low input dimension, but degrade as the number
of inputs increase.

For expensive computational models, the use of sample-
based approaches that use the full model are often computation-
ally prohibitive. A typical strategy in these circumstances is to
create a surrogate or metamodel of the full model using a small
set of samples from the full model. Often data-fit techniques,
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such as response surface modeling or the use of Gaussian pro-
cesses are employed to construct such models [13–15]. Other al-
ternatives are hierarchical surrogate models [16,17] that consider
hierarchies of modeling assumptions or computational grids, and
reduced-order models [18] that rely on underlying knowledge of
the governing equations of the computational model. The re-
sult of developing a surrogate model is usually a much cheaper,
in a computational sense, version of the computational model
that can be used for various purposes, such as uncertainty prop-
agation. The reduction in runtime, however, usually comes at
the expense of some loss in accuracy, or fidelity, in the surro-
gate model. Another alternative to dealing with an expensive
computational model in uncertainty propagation, is the use of a
surrogate representation of the uncertainty in the inputs. Some
techniques for this include implicit uncertainty propagation, mo-
ment matching, the advanced mean value method, and unscented
transforms [19–24].

The approach we propose here for propagating uncertainty
through a computational model involves some aspects of sample-
based methods and the development of a data-fit surrogate model
via projection of the data onto a functional basis representation.
To ensure scalability of our approach with increasing input di-
mension, we rely on an assumption of approximate additivity of
the underlying full computational model. To introduce this con-
cept, we consider first the high-dimensional model representa-
tion (HDMR) of a function, f (x), which is written as [25–27],

f (x1,x2, . . . ,xd) = f0 +
d

∑
j=1

f j(x j)+
d

∑
j<l

f j,l(x j,xl)+ · · ·

+ f1,2,...,d(x1,x2, . . . ,xd)

= ∑
u⊆D

fu(xu),

(2)

where D := {1,2, . . . ,d} denotes the set of input indices, u is a
multi-index, and individual terms in each summand are referred
to as subfunctions. For square-integrable functions, which is the
class of functions we are concerning ourselves with in this pa-
per (i.e., those functions with finite variance when the inputs are
random variables), we can write the function’s variance as

V( f ) = ∑
u⊆D
u6= /0

V( fu), (3)

which is a sum of each individual subfunction’s variance. In
variance-based global sensitivity analysis, sensitivity indices for
different combinations of inputs are estimated by normalizing
each individual subfunction’s variance by the total variance of
f [28]. We make use of this concept in our greedy approach to

determining which subfunctions to include in our surrogate rep-
resentation as discussed in Section 3. Given the variance of a
function as written above, we can define the effective superposi-
tion dimension of the function. Following Ref. [29], the effective
superposition dimension is the smallest integer, ds, such that

∑
|u|≤ds
u6= /0

V( fu)≥ αV( f ), (4)

where α is a user defined constant, such as 0.99. If a function
has a low effective superposition dimension, then higher order
interactions are not important in the construction of the HDMR
in Eq. 2. It turns out, that a great deal of functions, particularly
in the finance community, but also in engineering, have low ef-
fective dimension [7, 8, 29–31].

For functions with low effective dimension, e.g., ds = 2, then
the function is approximately additive in the sense that it consists
primarily of subfunctions that are a function of only one input,
with a few potentially significant subfunctions of more than one
input. We seek to exploit the approximate additivity of many
computational models by using the tools of compressed sens-
ing to interrogate the low order subfunctions of a given func-
tion, f , and determine if the function is well-represented as ap-
proximately additive. If so, then uncertainty propagation can be
carried out with a surrogate model constructed by summing the
low-order subfunctions found by compressed sensing, which, as
shown in Section 4, results in substantial computational savings
as compared to traditional Monte Carlo methods with nearly zero
loss of accuracy.

Compressed sensing is a recently developed technique for
recovering sparse signals that relies on linear dimensionality re-
duction [32–34]. We provide a brief overview of the rich field
here. The general concept, as we employ it here, is that certain
signals (for us outputs of computational models) can be approx-
imated well by a sparse representation in a particular functional
basis. Thus, the coefficient vector in the functional basis requires
only a few nonzero entries. For a given set of basis functions,
{ψk}N

k=1, we assume that a signal, f , can be represented as a
linear combination

f = Ψc, (5)

where Ψ is an N×N matrix with columns, ψk, and c is an N×1
vector of coefficients. If f is sparse (or approximately sparse) in
the basis, Ψ, then c will consist of many values that are effec-
tively zero. The function is called S-sparse in Ψ if there exists a
c ∈ RN with only S << N nonzero entries. Samples of the sig-
nal, f , are obtained by another linear operator, Φ, which is an
M×N measurement matrix, where M < N. A requirement of
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compressed sensing is that Φ and Ψ be as incoherent as possible,
meaning as dissimilar as possible [34]. We accomplish this here
by setting Φ equal to a random subset of the rows of the identity
matrix. Then the sampled signal is

b = Φ f , (6)

which in our context, is just M (rather than N, or even n in the
context of Monte Carlo simulation with Eq. 1) evaluations of
our computational model. The purpose of compressed sensing
is then to recover the sparsest signal, Ψc, that produces the mea-
surements f . This can be written as an optimization problem as

ĉ = arg min
c∈RN

‖c‖0 subject to b = ΦΨc, (7)

where ‖c‖0 is defined as the number of nonzero entries in c.
Finding a solution to this problem would require enumeration
of all possibilities and is thus of combinatorial complexity. The
fundamental insight in compressed sensing is the convex relax-
ation of Eq. 7 by using the l1 norm to find the coefficients as

ĉ = arg min
c∈RN

‖c‖1 subject to b = ΦΨc, (8)

where, ‖c‖1 = ∑
N
k=1 |ck|. With enough measurements, if f is

sparse in Ψ, then it can nearly always be reconstructed from b
using Eq. 8, as f ≈Ψĉ [35]. Eq. 8 can be implemented as a lin-
ear program, for which many efficient solution algorithms exist.

Our goal then in this work is to assume a basis exists such
that the subfunctions of a given function, f , can be represented
sparsely in that basis. By assuming low effective superposition
dimension, we will then interrogate the subfunctions of f by fix-
ing all inputs that are not active in a given subfunction. Doing
this allows us to sparsely reconstruct the subfunctions of f with
very few evaluations of f per subfunction. If the function is of
low effective superposition dimension, then only a small number
of subfunctions must be reconstructed and then added together
to provide a nearly exact surrogate representation of f . We de-
velop our methodology for constructing such surrogates in the
following section.

3 METHODOLOGY
In this work we assume we have a sparse representation of

a given function f in the basis of Legendre polynomials. In Sec-
tion 4, we present results for an analytical function that is defined
as sparse in the basis of Legendre polynomials to demonstrate
the effectiveness of the approach when this type of information
is known. However, we also present results on a cooled gas tur-

bine blade computational model that was treated as a black box
in which the Legendre polynomial basis representation performs
extremely well.

The Legendre polynomials in one-dimension, Ln, on [−1,1],
can be written as

Ln(x) =
1

2nn!
dn

dxn

[
(x2−1)n] , (9)

according to Rodrigues’ formula. These polynomials are or-
thonormal with respect to the uniform measure on [−1,1]. When
attempting find a sparse representation of a function, f , using
Eq. 8, we randomly sample a few points in the input space to
generate a few random samples of the output space (this ensures
good incoherence of Ψ and Φ). For the case of Legendre poly-
nomials, sampling randomly from the Chebyshev distribution,
rather than uniformly, produces better recovery of signal infor-
mation [36, 37]. Thus, to construct Ψ, we sample in the input
space with the Chebyshev distribution (also know as the arcsine
distribution), whose probability density function is

p(x) =
1

π
√

1− x2
, (10)

with support [−1,1]. To ensure we can handle arbitrary intervals,
[a,b], with the Legendre polynomials, we sample a Chebyshev
point and bijectively map it onto [a,b] as

x 7→ a+(b−a)
x+1

2
. (11)

To construct a Legendre polynomial basis for a function of
d inputs, with order 0 to N j−1 one-dimensional Legendre poly-
nomials in each dimension, j, we take tensor products. Let L j be
a matrix whose rows are made up of the Legendre polynomials
evaluated at given samples of x j. That is, each row has a specific
sample of x j associated with it. If we have M j samples and order
0 through N j − 1 Legendre polynomials for input j, then L j is
M j×N j. We can then construct the matrix Ψ as

Ψ =
d⊗

j=1

L j, (12)

where ⊗ is the Kronecker product of the matrices, L j, and Ψ is
M×N, where M = ∏

d
j=1 M j and N = ∏

d
j=1 N j.

As can be seen by the formula for M, the number of samples
required grows combinatorially with the number of inputs. Thus,
even just a few samples in each dimension can quickly become
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computationally infeasible if d is large and we are creating a ba-
sis over the product space of the inputs using Eq. 12. However, if
we assume f is approximately additive, then there is no need to
create a basis over the product space of the inputs, since higher
order interaction terms in the HDMR of the function will be neg-
ligible. For example, if we know that the superposition effective
dimension of a function, f , is ds = 1, then the function (which is
then referred to as purely additive) can be written exactly as

f (x) = f0 +
d

∑
j=1

f j(x j). (13)

To construct a surrogate representation of an f defined by Eq. 13,
we need only construct individual surrogates for each f j. To do
this in our compressed sensing context, we can define Ψ j = L j
and solve Eq. 8 to arrive at a sparse surrogate representation,

f̂ j ≈ f j + f̃0, (14)

of the subfunction associated with x j and an offset, f̃0. The sur-
rogate estimates an offset because we must fix the inputs {xl}l 6= j
to nominal values. The HDMR found by using a nominal point
is referred to as a cut-HDMR, as discussed in Ref. [26]. We use
f̃0 here rather than f0 or f̂0 because the offset in this expression
depends entirely on the nominal values (so it is not unique in
the sense of having only one possible f0) of the inputs chosen
and it is not an approximation. This concept is shown notion-
ally for a two input function in the left plot of Fig. 1, where the
squares represent samples of x1 with x2 fixed to a nominal value
to estimate f1, and the circles represent samples of x2 with x1
fixed to a nominal value. In each dimension, our approach is to
start with a small number of samples (e.g., 3), and solve Eq. 8.
We then compute ‖ĉ j‖0. We then randomly add another Cheby-
shev point, solve Eq. 8, and compute ‖ĉ j‖0 again. Once this
“l0 norm” reaches equilibrium, we assume we have arrived at a
good representation of f j. This is a heuristic for determining how
many samples are required for any given input and requires fur-
ther study. Certainly if ‖ĉ j‖0 = N j, then we do not have sparsity
in the basis representation and the representation itself is likely
a poor approximation of the subfunction f j plus an offset. If
this conclusion is reached at this point, then at worst we have
spent ∑

d
j=1 N j function evaluations, which can be repurposed for

another approximation approach based on random sampling or
used as part of a Monte Carlo simulation. If our sampling heuris-
tic in each dimension of an additive function suggests we have
a good sparse representation of each subfunction, then we may

construct our surrogate of f as

f̂ (x) = f̃0 +
d

∑
j=1

f̂ j−d f̃0, (15)

where the offset term, f̃0 is computed by evaluating f at a nomi-
nal value of each input.

To determine how well our additive surrogate representation
is approximating f , we conduct a validation exercise after each
additional term in the surrogate HDMR is added. To do this,
we randomly sample a small number of points from x, (e.g.,
10 points), and evaluate f for each of these points. None of
these points is a part of the point set used to generate the sur-
rogate representation. At these points we compute the differ-
ence between our surrogate representation and the true function,
ei(xi) = f (xi)− f̂ (xi). We then use ‖e‖2, as an indicator of how
well the surrogate is approximating f . As a heuristic, if ‖e‖2 is
below a user specified threshold, we consider the approximation
sufficient. The implications of this heuristic are a topic of future
work.

If, after adding all subfunctions of one input, that is, all
possible f̂ j terms, we are still not approximating f well in our
validation set, then we continue on to two input subfunctions.
This is assuming also that a sparse representation for each sub-
function, f j, has been found. Moving to subfunctions of two
inputs requires the tensor product of the Ψ j matrices. For ex-
ample, for a subfunction approximation of f j,l , we compute the
matrix Ψ j,l = Ψ j⊗Ψl . This requires a tensor product of the one-
dimensional Chebyshev point sets for x j and xl , and subsequent
evaluation of f at those points. A two-dimensional tensor prod-
uct of 9 Chebyshev points in each dimension is shown in the right
plot of Fig. 1. Here an original set of 18 points used to estimate
two single input subfunctions would become 81 points. Thus, to
ensure that only two-input subfunctions of likely significance in
the approximation of f are incorporated, we use a greedy-based
procedure for selecting which interaction terms to use. For this,
we estimate the main effect sensitivity indices for each input x j
as

Ŝ j =
V( f̂ j)

V( f̂ )
. (16)

These sensitivity indices estimate the approximate main effect
contribution of input, x j, and should be estimated using the antic-
ipated distributions of each input that will be used in uncertainty
propagation through the surrogate once its construction is com-
plete. Experience has shown that inputs with large main effect
indices also tend to be those inputs involved in significant inter-
action effects. Thus, we add two input subfunctions by starting

5 Copyright © 2016 by ASME



x
1

x
2

x
1

x
2

FIGURE 1. ONE DIMENSIONAL CHEBYSHEV DISTRIBUTED POINTS FOR TWO INPUTS FOR ESTIMATING ONE INPUT SUBFUNC-
TIONS (LEFT). TENSOR PRODUCT OF THE ONE DIMENSIONAL CHEBYSHEV DISTRIBUTED POINTS FOR ESTIMATING A TWO INPUT
SUBFUNCTION (RIGHT).

with the input with the largest sensitivity index and the input with
the second largest sensitivity index. If our heuristic error indica-
tor has not fallen below the threshold after this subfunction is
incorporated into the surrogate approximation, then we continue
with the two input subfunction of the inputs with the largest and
third largest sensitivity index, and continue in this manner until
we have satisfied our error threshold, or determined it was wise
to abandon the approximation in this particular basis representa-
tion. We note here that when two input subfunctions have been
added to the surrogate representation, we must take care to avoid
double-counting single input subfunction terms. That is, our two
input subfunction approximation for inputs x j and xl is

f̂ j,l(x j,xl)≈ f j,l(x j,xl)+ f j(x j)+ fl(xl)+ f̃0. (17)

Thus, if all possible two input subfunctions are added to the sur-
rogate representation of f , we have

f̂ (x) =
(d−1)(d−2)

2
f̃0− (d−2)

d

∑
j=1

f̂ j(x j)+
d

∑
j,l=1
j<l

f̂ j,l(x j,xl).

(18)

Once we have a surrogate representation of f (x) that we are
satisfied with, we can proceed to propagate uncertainty through
the surrogate using any supported distribution of x. That is, any
distribution whose probability density has values greater than
zero only on the hypercube defined by the maps for each input
defined by Eq. 11 and used in the surrogate construction. We note
that our approach also provides approximations to the main effect
sensitivity indices of each input, and variability of these sensitiv-
ities with respect to changing input distributions can rapidly be

assessed.

4 RESULTS
We demonstrate our compressed sensing approach for un-

certainty propagation on a two dimensional analytical function
and on a finite element model of a cooled gas turbine blade. The
analytical function is designed to show the effectiveness of our
approach under perfect conditions. The cooled gas turbine blade
model was treated as a black box, and thus, nothing was known
about the sparsity of this model in the Legendre basis. This is the
type of scenario we expect to encounter generally.

4.1 4-SPARSE LEGENDRE FUNCTION
The function we seek to develop a surrogate approximation

for in this demonstration is

f (x1,x2) = 1+ x1 +
1
2
(3x2

2−1)+ x1x2, (19)

where (x1,x2) ∈ [−1,1]2. This function has four modes in the
Legendre basis spanned by the tensor product of the one di-
mensional Legendre bases for each individual dimension and no
other components. Therefore, this function is known to be 4-
sparse in the Legendre basis, and should be approximated ex-
actly with very few function evaluations by our approach. We
estimate the subfunctions, f̂1 and f̂2, as shown in Fig. 2. Here,
the exact signal for each, (e.g., f1 + f̃0 for the x1 component) is
also plotted on each figure. The approximations of these sub-
functions are exact, thus, only one curve is seen in each plot on
the figure. In this case, f̃0 is computed with (x1,x2) = (0,0).
The construction of each subfunction required 5 evaluations of
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the function, f (x1,x2) each. To determine this, we began with
2 samples for each subfunction construction independently and
computed ‖ĉ j‖0 for each input as described in Section 3. We
continued with this process for 3, 4, and 5 samples, where it was
revealed that the ‖ĉ j‖0 terms for each input were no longer vary-
ing with increasing sample size. Thus, the process was stopped at
5 samples each. The third plot in the figure shows the validation
error, ‖e‖2, which was computed for each successive approxima-
tion with 10 randomly chosen values of (x1,x2) that were prop-
agated through each approximation, as well as the full function,
f (x1,x2). The first error value is the error from using just f̃0 to es-
timate f (x1,x2). The second error value is associated with using
f̂1, and the last error value is associated with using f̂1 + f̂2− f̃0.
As can be seen from the plot, the error is decreasing as we add
more terms to the approximation, but we still have not recov-
ered the full signal from just the one input subfunctions. This
can also be seen in the fourth plot of Fig. 2, where the functions
f1,2 = f (x1,x2) and f̂1,2 are plotted as a function of (x1,x2). The
surfaces differ because the f̂1,2 function cannot account for the
interaction effect of x1 and x2 in f1,2 with only additive terms of
one input subfunctions. We note that thus far, we have evaluated
f (x1,x2) a total of 20 times. These evaluations consist of 5 for
each one input subfunction construction, and 10 for validation.

The next step in our modeling process then, is to add the two
input subfunction of (x1,x2) following the procedure described
in Section 3. The result of adding the two input subfunction to
our original surrogate representation is shown in Fig. 3. The top
plot overlays the surrogate approximation, f̂ (x1,x2), and the full
model, f (x1,x2). The surrogate model is an exact match in this
case. The bottom plot shows the cumulative distribution func-
tion (CDF) of f (x1,x2), with X1 ∼U [0,1] and X2 ∼U [−.5, .5].
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FIGURE 3. SURROGATE APPROXIMATION, f̂ , AND FULL
MODEL, f (TOP). EMPIRICAL CDF FUNCTION OF FULL MODEL
VIA MONTE CARLO SIMULATION (BLACK) AND SURROGATE
APPROXIMATION (RED) (BOTTOM).
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This CDF was estimated empirically via Monte Carlo simulation
using 1000 full model evaluations and is shown as a black line.
Also shown on this plot is the empirical CDF of f̂ (x1,x2), which
was estimated using 1000 samples of the surrogate approxima-
tion. This CDF is shown as a dashed red line and matches the
true CDF exactly. To construct the surrogate approximation re-
quired only 25 full model evaluations, plus another 10 full model
evaluations for validation. We use the tensor product of the pre-
viously computed sample points when constructing the two input
subfunction, which allows us to reuse the 10 full model evalua-
tions acquired in the construction of the one input subfunctions.

4.2 COOLED GAS TURBINE BLADE MODEL
For this demonstration we consider a finite element model

of a cooled gas turbine blade modeled after that provided in
Ref. [38]. The blade profile and the random inputs to the finite
element model are shown in Fig. 4. The computational model is

FIGURE 4. THE COOLED GAS TURBINE BLADE PROFILE
AND RANDOM INPUT VARIABLES.

a heat transfer model that simulates a cooled gas turbine blade
in a hot gas path flow. The uncertain inputs to this system, their
units, and their probability distributions are provided in Tab. 1.
Here, k is the thermal conductivity of the blade, Tgas is the ex-
ternal gas temperature, hLE is the leading edge heat transfer co-
efficient, hTE is the trailing edge heat transfer coefficient, Tcool
is the cooling passage temperature, and hcool is the cooling pas-
sage heat transfer coefficient. It is assumed that a failure will
occur when the maximum temperature or temperature gradients
become too large. This is modeled by combining damage due to
high temperature and damage due to high temperature gradients
as

D :=
Tmax−T des

max

Tlimit−T des
max

+
|∇T |max−|∇T |des

max

|∇T |limit−|∇T |des
max

, (20)

where Tlimit = 1,500K is the limiting value of the temperature,
|∇T |limit = 80,000K/m is the limiting value of the temperature
gradient, T des

max = 1,430K is the maximum temperature at design-
intent conditions, and |∇T |des

max = 70,000K/m is the maximum
temperature gradient at design-intent conditions. We consider

TABLE 1. COOLED GAS TURBINE BLADE MODEL INPUTS
AND DISTRIBUTIONS, WHERE T (a,b,c) REPRESENTS A TRI-
ANGULAR DISTRIBUTION WITH LOWER LIMIT, a, MODE, b,
AND UPPER LIMIT, c.

Input Units Distribution

k W/(mK) T (28.5,30,31.5)

Tgas K T (1400,1500,1600)

hLE W/(m2K) T (15000,16000,17000)

hTE W/(m2K) T (3500,4000,4500)

Tcool K T (550,600,650)

hcool W/(m2K) T (1400,1500,1600)

the damage, D, as the quantity of interest of this system. Thus,
our goal is to efficiently propagate uncertainty from the inputs to
this particular output.

Using the methodology outlined in Section 3, we construct a
compressed sensing surrogate representation of the damage out-
put of the computational model of the cooled gas turbine blade.
We construct this surrogate as an approximately additive func-
tion of the inputs using a sparse representation in the Legendre
polynomial basis. After initially creating a purely additive sur-
rogate (i.e., containing only the one input subfunctions), the ap-
proximate sensitivity indices, Ŝ j, for j = 1,2, . . . ,6, were com-
puted according to Eq. 16. The results of this computation are
presented in Tab. 2. According to our greedy strategy for in-

TABLE 2. APPROXIMATE MAIN EFFECT SENSITIVITY IN-
DICES COMPUTED USING THE PURELY ADDITIVE SURRO-
GATE MODEL.

Input k Tgas hLE hTE Tcool hcool

Ŝ 0.01 0.93 0.01 0.01 0.03 0.02

corporating higher order subfunctions, which was described in
Section 3, we would first consider adding the two input sub-
function of (Tgas,Tcool), followed by the two input subfunction
of (Tgas,hcool), and so on.

In Fig. 5, the results for uncertainty propagation through
the surrogate representation containing all subfunctions of one
variable and five subfunctions of two inputs, along with the re-
sults from Monte Carlo simulation with the full computational
model are shown. The two input subfunctions included in the
surrogate representation are the pairs of Tgas and each other vari-
able. In Fig. 5, the top plot displays the histogram of Damage
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FIGURE 5. HISTOGRAM OF FULL MODEL MONTE CARLO
SIMULATION (TOP). HISTOGRAM OF SURROGATE REPRESEN-
TATION BASED MONTE CARLO SIMULATION (MIDDLE). EM-
PIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS OF THE
FULL MODEL AND SURROGATE REPRESENTATION (BOT-
TOM).

as computed by a 1,000 sample Monte Carlo simulation of the
full model. The middle plot presents the histogram computed
by sampling from the surrogate representation 1,000 times. The
surrogate representation itself required only 115 full model eval-
uations, which consisted of 5 evaluations for each one input sub-
function, 15 additional function evaluations for each two input
subfunction included, and 10 full model evaluations for the vali-
dation set. As can be seen from the two histograms, the surrogate
model provides an accurate representation of the full model. In
the bottom plot of the figure, the empirical cumulative distribu-
tion function for the Monte Carlo simulation of the full model
and the surrogate representation are plotted. As is clear from the
plot, these functions are nearly identical.

While the results from the surrogate representation con-
structed from 115 points and 12 terms (the offset term, 6 one in-
put subfunctions, and 5 two input subfunctions) are excellent and

represent substantial computational savings, more could have
been saved depending on the desired threshold for the valida-
tion error. As we did in the case of the analytical function in
Section 4.1, we randomly sampled 10 points in the input space,
propagated them through the full model, and used the results
as a validation set to test against with our surrogate represen-
tations. The results of this test as we added more terms to our
approximation are shown in Fig. 6. The figure clearly shows
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FIGURE 6. VALIDATION ERROR AS A FUNCTION OF THE
NUMBER OF TERMS IN THE SURROGATE APPROXIMATION OF
THE COOLED GAS TURBINE BLADE MODEL. THE RED LINE
INDICATES THE END OF THE PURELY ADDITIVE SURROGATE
TERMS AND THE BLUE LINE INDICATES THE END OF THE
TERMS USED IN COMPUTED THE RESULTS SHOWN IN FIG. 5.

that the validation error did not decrease anymore after the first
7 terms (the offset and the one input subfunctions). Indeed, the
results shown in Fig. 5 can be reproduced just as well with only
the first 7 terms of the surrogate representation, which required
only 40 full model evaluations to construct (including the 10 for
the validation set). Had a reasonable threshold for the valida-
tion error been set, we would not have greedily added the two
input subfunctions and the surrogate representation would have
been essentially identical. The development of robust algorithms
for constructing sparse surrogate representations that incorporate
such heuristics is a topic for future work.

5 CONCLUSIONS AND FUTURE WORK
We have presented a compressed sensing approach to un-

certainty propagation by constructing a sparse surrogate repre-
sentation of a computational model. The approach relied on the
assumption of approximate additivity. We demonstrated our ap-
proach on an approximately additive function that was known to
be sparse in the Legendre basis and the results revealed the effec-
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tiveness of our approach under perfect circumstances. We also
demonstrated our approach on a finite element model of a cooled
gas turbine blade for which we had no pre-requisite knowledge of
sparsity in the Legendre basis or approximate additivity. Never-
theless, our approach yielded significant computational savings
as compared to Monte Carlo simulation with negligible loss of
accuracy in the uncertainty propagation results. We hypothesize
that many other engineering computational models are approxi-
mately additive and can be represented well in a polynomial basis
(or other bases as necessary). If this hypothesis is true, then the
concept of using compressed sensing to efficiently find a sparse
representation of the underlying function is promising. To en-
sure the exploitation of sparsity and approximate additivity in
these situations, robust algorithms that identify a good basis to
search for sparseness in, and when a good sparse representation
has been found in that basis, are necessary. We have provided
several heuristics in this work that have some potential for pro-
viding this robustness, and their study is a topic of future work.
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