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ABSTRACT
Current design strategies for multi-physics systems seek to

exploit synergistic interactions among disciplines in the system.
However, when dealing with a multidisciplinary system with mul-
tiple physics represented, the use of high-fidelity computational
models is often prohibitive. In this situation, recourse is often
made to lower fidelity models that have potentially significant
uncertainty associated with them. We present here a novel ap-
proach to quantifying the discipline level uncertainty in coupled
multi-physics models, so that these individual models may later
be used in isolation or coupled within other systems. Our ap-
proach is based off of a Gibbs sampling strategy and the identifi-
cation of a necessary detailed balance condition that constrains
the possible characteristics of individual model discrepancy dis-
tributions. We demonstrate our methodology on both a linear
and nonlinear example problem.

1 INTRODUCTION
Complex, multi-physics systems, such as aerospace vehi-

cles, often exhibit a great deal of uncertainty due to unexpected
multi-physics interactions. To achieve greater performance, the
design of such systems is usually aimed at exploiting these poten-
tial synergistic interactions. For this situation, it is often desired
that high-fidelity computational models capable of precisely rep-
resenting multi-physics interactions be used early in the design
process. Typically, however, such models will carry significant
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computational expense. Recent work has thus focused on multi-
fidelity approaches to the design and analysis of complex, multi-
physics systems [1–3]. In general, for a particular design or anal-
ysis task, there will be many computational models that can be
used to compute various quantities of interest in a multi-physics
system. These computational models will generally vary in terms
of fidelity because they will encompass different resolutions,
physics, and modeling assumptions. These models will also vary
in terms of computational expense. The goal then of multifidelity
approaches in the design and analysis of complex multi-physics
systems is to optimally exploit all available computational mod-
els for the task at hand. A critical aspect for enabling such mul-
tifidelity approaches is the rigorous quantification of uncertainty
associated with the modeling capabilities themselves.

Multi-physics systems, such as aerospace systems, are often
designed and developed by multiple teams within a given orga-
nization or set of organizations. As a result, the simulation of
complex, multi-physics phenomena usually involves the execu-
tion of coupled disciplinary computational models. Such simula-
tions can be computationally demanding, and recourse to lower
fidelity models may be necessary. In these circumstances, the
uncertainty, or model discrepancy, associated with each disci-
plinary model must be propagated through the coupled system.
To ensure sufficiently reliable and robust estimates of quantities
of interest in the system, rigorous quantification of the model
discrepancy in the discipline level computational models used in
coupled multi-physics simulations is essential. This is particu-
larly important in the multifidelity setting, where we may desire
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to improve the fidelity of one discipline (e.g., by introducing a
higher fidelity model) while keeping the fidelity of other model-
ing capabilities in the system fixed. For example, in the design of
an aircraft wing, we may determine that aspects associated with
a structural model are more important at a certain stage in the de-
sign process, so we use our computational budget to improve the
structures model while keeping an aerodynamics model at lower
fidelity.

In this paper we propose to estimate the model discrepancy
of discipline level models within coupled multi-physics systems.
We propose to do this by considering system level uncertainty in-
formation that is often available from experiments and historical
databases (e.g., Jane’s All the World’s Aircraft [4] for the case
of aerospace vehicles). From system level uncertainty informa-
tion, we identify compatible discipline level uncertainty infor-
mation pertaining to the individual models. By quantifying dis-
cipline level uncertainty, we enable the use of different couplings
of multifidelity models as we seek to efficiently explore the de-
sign space. The rest of the paper is organized as follows: In
Section 2, we present background on model discrepancy in cou-
pled multi-physics systems. In Section 3, we setup the problem
we use to demonstrate our methodology in this work. We follow
this with a description of our problem statement in Section 4 and
our methodology for solving our problem statement in Section 5.
Section 6 then provides both a linear and nonlinear demonstra-
tion of our model discrepancy quantification procedure. Finally,
conclusions and future work are presented in Section 7.

2 BACKGROUND
Model discrepancy arises because, even if all inputs and pa-

rameters of a mathematical model are known precisely, the math-
ematical model will not precisely estimate reality. The reason for
this is that some aspects of reality may have been omitted, im-
properly modeled, or contain unrealistic assumptions. Following
Ref. 5, we represent model discrepancy as an additive stochastic
process. For example, if we have a model that consists of a func-
tion f (x), where x is an input vector to the model, and reality is
denoted as fr(x), then the model discrepancy of the model can
be represented as

δ (x) = fr(x)− f (x), (1)

where here we are assuming there are no parameters in the model
to be calibrated. Typically, we will have available experimen-
tal data of reality (which will contain experimental variability),
which can be used to create a stochastic process representation
for δ (x). In this work, we assume that model discrepancy has
been quantified previously for all available disciplinary models
in the form of Gaussian processes. Thus, we add the Gaussian
process model discrepancy term to the output of a disciplinary

model. For example, for a given disciplinary model we have

Y (x) = f (x)+δ (x), (2)

where δ (x) is the Gaussian process representation of the model
discrepancy of the disciplinary model and Y (x) is the estimate of
reality from the model with quantified model discrepancy. In this
work, without loss of generality, we focus on discrepancies that
are not a function of an input.

Given the presence of model discrepancy in a coupled mul-
tidisciplinary system, we must be capable of propagating that
uncertainty to system level quantities of interest. Previous work
on multidisciplinary uncertainty analysis has focused on approx-
imate methods, such as surrogate modeling and simplified rep-
resentations of system uncertainty. The use of surrogates for
disciplinary models in a composed system can provide compu-
tational savings, as well as simplify the task of integrating com-
ponents [6]. Approximate representations of uncertainty, such
as using mean and variance information in place of a full proba-
bility distribution have been used to avoid the need to propagate
uncertainty between disciplines. Such simplifications are com-
monly used in uncertainty-based multidisciplinary design opti-
mization methods as a way to avoid a system-level uncertainty
analysis [7]. These approachs include implicit uncertainty prop-
agation [8], reliability-based design optimization [9], robust mo-
ment matching [10–12], advanced mean value method [13], col-
laborative reliability analysis using most probable point estima-
tion [14], and a multidisciplinary first-order reliability method
[15].

Other recent work has focused on exploiting the structure of
a given multidisciplinary system. Ref. 16 presents a likelihood-
based approach to decouple feedback loops, thus reducing the
problem to a feed-forward system. Ref. 17 builds off the
likelihood-based approach and incorporates an auxiliary variable
approach based on the probability integral transform to quantify
the distributions of coupling variables. Dimension reduction and
measure transformation to reduce the dimensionality and prop-
agate the coupling variables between coupled components have
been performed in a coupled feedback problem with polynomial
chaos expansions [18–20]. Coupling disciplinary models by rep-
resenting coupling variables with truncated Karhunen-Loève ex-
pansions, has been studied for multi-physics systems [21]. A hy-
brid method that combines Monte Carlo sampling and spectral
methods for solving stochastic coupled problems has also been
proposed by Refs. 22 and 23.

In our approach we focus on sample based propagation of
uncertainty through the coupled system. As discussed in the
following section, our coupled system is modeled as a Markov
Chain, and uncertainty is propagated through the system via
Gibbs sampling. This approach is similar in concept to the use
of fixed point iteration to ensure compatibility of coupling vari-
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ables in a deterministic sense. Under the presence of model dis-
crepancy, we seek compatibility in the coupling variables in a
distributional sense.

3 PROBLEM SETUP
To demonstrate our sample based approach to quantifying

discipline level model discrepancy in coupled multi-physics sys-
tems, we consider a two discipline system model with feedback
coupling. This system is shown notionally in Fig. 1. The disci-

FIGURE 1. THE COUPLED TWO DISCIPLINE SYSTEM WITH
MODEL DISCREPANCY

plines are represented by the functions f (z) and g(y). The model
discrepancies are independent, normally distributed random vari-
ables, where δ1 ∼N (0,σ2

1 ) and δ2 ∼N (0,σ2
2 ). Here we are

assuming that the model discrepancies are unbiased. This is due
to our assumption that the discrepancies do not vary as a function
of any variable in the system. Thus any bias in a given discrep-
ancy term would be added to the associated model itself. The
unbiased nature of the discrepancy terms can easily be relaxed if
necessary.

The goal of our work is to rigorously quantify the model dis-
crepancies δ1 and δ2, using available system level information.
That is, we wish to find δ1 and δ2 such that we can uncoupled the
system and use our computational models, f and g, with their as-
sociated model discrepancies in other contexts (e.g., when cou-
pled with other modeling capabilities or in isolation). This con-
cept is shown notionally in Fig. 2. Our approach is based off of
the assumption of the availability of a system level quantity of
interest, for example, Q(Y,Z), where the quantity is a function
of the coupling variables. We aim to identify δ1 and δ2 such that
the joint distribution of Y, and Z that results from resolving the
system shown in Fig. 1, provides a close approximation to the
real-world quantity of interest when passed through Q. Without

FIGURE 2. THE UNCOUPLED DISCIPLINES WITH ASSOCI-
ATED MODEL DISCREPANCY.

loss of generality, in this work we will assume the quantity of in-
terest from the system that we have real-world data for is one of
the coupling variables (i.e., Z or Y ). The conditional distributions
of Y and Z that result from the coupled system are

Y = f (Z)+δ1 (3)
Z = g(Y )+δ2. (4)

The propagation of uncertainty through the coupled system can
then be represented as a Markov chain that moves from one dis-
ciplinary output to the next. We represent this concept in Fig. 3,
where we also present the concept of stopping the Markov chain
at different points in the system. In the top portion of the figure,
we stop the chain after evaluating f (Z) and adding the associ-
ated discrepancy, δ1. In the bottom portion, we stop the chain
after evaluating g(Y ) and adding the associated discrepancy, δ2.
For a unique joint distribution of Y and Z, which we denote as
pY,Z(y,z), we require that the distributions of Y and Z be the same
at either stopping point.

This leads to a set of general compatibility requirements
that must be satisfied to ensure we have a unique distribution,
pY,Z(y,z). First, we may write the relation shown by the last two
steps of the chain in the top portion of Fig. 3 as

Y = f (g(Y )+δ2)+δ1, (5)

and the relation shown by the last two steps of the bottom portion
of the figure as

Z = g( f (Z)+δ1)+δ2. (6)

This establishes two requirements for compatibility. A third and
crucial requirement, as will be demonstrated in Section 6, arises
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FIGURE 3. MARKOV CHAIN REPRESENTATION OF THE PROPAGATION OF UNCERTAINTY THROUGH A TWO DISCIPLINE FEED-
BACK COUPLED SYSTEM.

from the definition of conditional probability [24]. Enforcing the
same joint distribution of Y and Z in the top and bottom portion
of Fig. 3 is equivalent to stating we require detailed balance to
hold [25]. The condition is given as

pY,Z(y,z) = pY |Z(y,z)pZ(z) = pZ|Y (z,y)pY (y), (7)

which is a probabilistic assertion that it should not matter where
we stop the Markov chain in the propagation of uncertainty
through the coupled system.

4 PROBLEM STATEMENT
In the context of the coupled system shown in Fig. 1, our

problem is to find the distributions of δ1 and δ2, such that the
joint distribution pY,Z(y,z), produces accurate estimates of the
system level quantity of interest, Q(Y,Z), and satisfies Eqns. (5),
(6), and (7). We note here that our two discipline coupled system
is used for ease of the presentation, and is not a restriction on
our approach. More disciplines can be added to our system with
more complex couplings and still be adequately addressed by our
approach described in Section 5.

In a general sense, the problem we seek a solution for may
be written as,

(σ∗1 ,σ
∗
2 ) = argmin

σ1,σ2
J = Ds(Qr‖Q̂(Y,Z))+

Ds(pY |Z(y,z)pY (y)‖pZ|Y (z,y)pZ(z))

subject to σ1,σ2 > 0.
(8)

Here Ds(·, ·) denotes a generic statistical distance measure (e.g.,
Kullback-Liebler divergence, Hellinger distance, sum of the
squares of the differences in sufficient statistics, etc. [26]). Also
in Problem 8, Qr is the real-world estimated distribution of a

quantity of interest and Q̂ is the estimate of that quantity of in-
terest from the joint distribution of Y and Z. In the following
section we present a general methodology for finding the solu-
tion to Problem 8 under specific assumptions about Qr.

5 METHODOLOGY
We approach the solution of Problem 8 by first recogniz-

ing that information regarding a real-world quantity of interest,
Qr, is often gathered experimentally and presented as a normal
distribution. In this setting, sufficient statistics for Qr are then
the moments of the distribution. Without loss of generality, we
assume that the quantity of interest we have available informa-
tion for is Z. Thus, we have an approximation of the distribution
of Zr, the real-world random variable Z, which we assume is
Zr ∼N (µZr ,σ

2
Zr
). Our methodology is also based on a varia-

tional approach, where we seek a compatible multivariate normal
distribution for pY,Z(y,z), such that Problem 8 is solved. For the
case of linear disciplines, normally distributed discrepancies, and
normally distributed Zr, this approach is exact. For the nonlinear
case, this variational approach results in approximate solutions.
An analysis of the impact of this assumption is a topic for future
work.

Given our assumptions, we rewrite J in Problem 8 as

J (σ1,σ2) = |µZr −µẐ |+ |σZr −σẐ |+‖SY |Z,Z−SZ|Y,Y‖, (9)

where Ẑ refers to the Z estimated by our sample based approach
(described below), and S represents the sufficient statistics of a
given distribution. For pY |Z,Y = pY |Z pZ , these are the means and
covariance matrix of the joint distribution. The same holds for
pZ|Y,Z = pZ|Y pY .

With this objective function, we search for solutions using
standard off-the-shelf optimization routines (e.g., pattern search)
coupled with an uncertainty propagation methodology. This con-
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cept is shown notionally in Fig. 4, where the analysis block rep-
resents our uncertainty propagation approach through a coupled
system.

FIGURE 4. GENERAL APPROACH TO SOLVING PROBLEM 8.

To propagate uncertainty through the system represented by
Fig. 1, and hence to evaluate J in Eqn. 9, we recognize the
Markov chain nature of the system and the availability of the
conditional distributions of Y |Z and Z|Y . This enables us to
use the Gibbs sampling algorithm to iteratively sample from the
conditional distributions. Gibbs sampling was first described by
Ref. 25 and has also been referred to as successive substitution
sampling [27]. It is a Markov chain Monte Carlo based method
for generating samples from a joint distribution that cannot be di-
rectly sampled. Following Refs. 27 and 28, suppose we have ran-
dom variables Y1, . . . ,Yk, and we wish to generate samples from
the joint distribution of those random variables, which we denote
as pY1,...,Yk . Assume we have a complete set of conditional distri-
butions, pYi|{Y j , j 6=i} for i = 1, . . . ,k, available for sampling. Then,

starting from some initial arbitrary set of values, y(0)1 , . . . ,y(0)k ,
where the superscript denotes the iteration number of the Gibbs
sampler, we draw a sample y(1)1 from p

Y1|Y2=y(0)2 ,...,Yk=y(0)k
. We then

draw a sample y(1)2 from p
Y2|Y1=y(1)1 ,Y3=y(0)3 ,...,Yk=y(0)k

, and continue

in this manner up to yk from p
Yk|Y1=y(1)1 ,...,Yk−1=y(1)k−1

, which com-

pletes one iteration of the Gibbs sampler. After m iterations we
obtain (y(m)

1 , . . . ,y(m)
k ). For continuous distributions, Ref. 27 has

shown, under mild assumptions, that this k-tuple converges in
distribution to a random observation from pY1,...,Yk as m→ ∞.

The algorithm we use for our two discipline case is shown
in Algorithm 1. In this algorithm, the subscript, t refers to the
top Markov chain in Fig. 3 and the subscript, b, refers to the
bottom Markov chain in the same figure. We recall here that
for compatibility, these Markov chains must arrive at the same
stationary distribution to ensure detailed balance is satisfied. In
the algorithm, we are free to set the number of samples, M, of
the joint distributions, which we use to estimate the sufficient

statistics. We also must set a burn-in rate for the Markov chain
Monte Carlo Gibbs sampling method, which refers to the number
of samples we initially throw away to avoid autocorrelation in the
samples [26]. In this work we set M = 10,000 and B = 4,000.
The computational expense of our modeling capabilities in our
demonstrations was negligible, thus, we oversampled to ensure
converged results. It is a topic of future work to determine how
to best select the parameters, M and B.

ALGORITHM 1: GIBBS SAMPLING FOR
UNCERTAINTY PROPAGATION

Data: Model discipline functions f (z) and g(y),
discrepancy standard deviations σ1 and σ2,
number of samples M, Burn-in, B.

Result: Joint densities PZ|Y,Y and PY |Z,Z .

for i = 1 : M do
Initialize y(0)t = y(0)b = z(0)t = z(0)t = 0.
for j = 1 : B do

Let z( j)
t = g(y( j−1)

t )+δ
( j)
2

Let y( j)
t = f (z( j)

t )+δ
( j)
1

Let y( j)
b = f (z( j−1)

b )+δ
( j)
1

Let z( j)
b = g(y( j)

b )+δ
( j)
2

end
Let yi

t = y(B)t

Let zi
t = z(B)t

Let yi
b = y(B)t

Let zi
b = z(B)t

end
Estimate the sufficient statistics of pZ|Y,Y from {yi

t ,z
i
t}M

i=1
Estimate the sufficient statistics of pY |Z,Z from {yi

b,z
i
b}M

i=1

We couple our uncertainty propagation algorithm with a pat-
tern search based optimization routine to search the space of pos-
sible σ1 and σ2 values that are compatible and lead to an accurate
estimate of Zr sufficient statistics. In the following section we
present our results for a linear and nonlinear demonstration case.

6 ANALYSIS
We present in this section, an analytic solution to the lin-

ear case to provide a clear description of what we are seeking to
accomplish in terms of compatibility of the discrepancy terms.
Here we show both a compatible and an incompatible solution.
We then demonstrate our numerical approach using Gibbs sam-
pling on a nonlinear problem.
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6.1 Linear Case

For the linear case, we define two disciplines as

f (z) = az+b (10)
g(y) = cy+d (11)

with a,b,c,d ∈ R. Furthermore, we define the outputs for these
disciplines with model discrepancy as

Y = f (Z)+δ1 (12)
Z = g(Y )+δ2 (13)

where Z is the input to f and Y is the input to g. Since our disci-
plines f (Z) and g(Y ) are linear, we can analytically evaluate the
marginal conditional probability distributions to find the condi-
tions under which compatibility, as described by Eqn. (7) is sat-
isfied. Although we are assuming that the discrepancies δ1 and
δ2 are unbiased, we maintain the µ1 and µ2 variables for com-
pleteness. Since the discrepancies and the functions are linear,
the marginal distributions are normally distributed and given by

Z ∼N (µZ ,σ
2
Z)

Y ∼N (µY ,σ
2
Y ).

The conditional distributions are also normally distributed and
are given by

Y | {Z = z} ∼N (az+b+µ1,σ
2
1 ) (14)

Z | {Y = y} ∼N (cy+d +µ2,σ
2
2 ). (15)

Our task is then to find µZ , σZ , µY , and σY . Here, we are not
yet considering a specific Zr, and are instead looking to derive
conditions on σ1 and σ2 for any Zr.

The first step we take is to find the conditions such that the
system will converge, which is to satisfy Eqns. (5) and (6). Once
the marginal distributions converge, the distributions of Z and
Y cannot change between each iteration. We begin by finding
implicit equations for Z and Y following the output once around
the loop shown in Fig. 1 to arrive at

Z = g( f (Z)+δ1)+δ2 = c(az+b+δ1)+d +δ2

Y = f (g(Y )+δ2)+δ1= a(cy+d +δ2)+b+δ1.

By inspection, the statistics of the distribution for Z are

µZ = c(aµZ +b+µ1)+d +µ2 (16)

σ
2
Z = c2(a2

σ
2
Z +σ

2
1 )+σ

2
2 . (17)

By rearranging Eqns. 16 and 17 we have

µZ =
c(b+µ1)+d +µ2

1−ac

σ
2
Z =

c2σ2
1 +σ2

2
1−a2c2

Since by definition σZ ,σ1,σ2 > 0, then

1−a2c2 > 0
=⇒ ac < 1. (18)

This condition ensures that the marginal distributions do not
grow without bound.

Continuing the analysis, for any independent and normally
distributed δ1 and δ2, we can also find the conditional probability
density functions for Eqns. (14) and (15), which we write as

pY |Z(y,z) =
1√

2πσ1
exp
{
− 1

2

(
y− (az+b+µ1)

σ1

)2}
pZ|Y (z,y) =

1√
2πσ2

exp
{
− 1

2

(
z− (cy+d +µ2)

σ2

)2}
.

Then the product of the conditional densities and the marginal
densities yields the joint densities as

PY |Z(y,z)PZ(z)= (2πσ1σZ)
−1 exp

{
− 1

2

[(
y− (az+b+µ1)

σ1

)2

+

(
z−µz

σz

)2
]}

(19)

PZ|Y (z,y)PY (y)= (2πσ2σY )
−1 exp

{
− 1

2

[(
z− (cy+d +µ2)

σ2

)2

+

(
y−µY

σY

)2
]}

. (20)
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Equations (19) and (20) are the joint densities associated with
our linear system and the top and bottom of Fig. 3. Detailed
balance requires that these joint distributions be equal to each
other. Therefore, the arguments of each exponent must be equal
to each other. This leads to

(
y− (az+b+µ1)

σ1

)2

+

(
z−µz

σz

)2

=(
z− (cy+d +µ2)

σ2

)2

+

(
y−µY

σY

)2

. (21)

Carrying through the multiplication and comparing the coeffi-
cients of the terms y2, z2, yz, y, and z we find the conditions
required for detailed balance. For the case of a linear system, the
conditions we require are that given by Eqn. (18) and the follow-
ing condition:

−2a
σ2

1
=
−2c
σ2

2

=⇒ σ2
1

σ2
2

=
a
c
. (22)

As long as the ratio of variances to our model discrepancies abide
by Eqn. (22), then detailed balance will hold between our result-
ing design variables.

To demonstrate the difference in joint densities with and
without detailed balance, we compute two examples of this lin-
ear case in which a = 1/4, b = 1, c = 1, and d = −2. From
Eqn. (18), we know that the Gibbs sampler will converge. We
draw 10,000 samples and run the Gibbs sampler as presented in
Algorithm 1 using two different pairs of discrepancy variances.
First, we let σ2

1 = 1 and σ2
2 = 1/2. Since σ2

1 /σ2
2 6= a/c, the joint

densities do not meet the detailed balance condition. Using our
algorithm to produce samples in this case results in the scatter-
plots shown in Fig. 5. As can clearly be seen from the figure, the
joint distributions that result from stopping a different point in
the Markov chain are not the same.

To demonstrate the importance of the detailed balance con-
dition, we perform our Gibbs sampling procedure with σ2

1 = 1/4
and σ2

2 = 1. The results of this analysis are shown in Fig. 6.
From visual inspection of the figure, it is clear that these scat-
terplots represent the same joint density functions. In this case,
σ2

1 /σ2
2 = a/c. Quantitative evidence of the importance of the

detailed balance condition are presented in Tab. 1, where the suf-
ficient statistics of the distributions are presented for both the
without detailed balance (Without DB) and with detailed balance
(With DB) satisfied cases. These statistics correspond to Figs. 5
and 6, respectively.

FIGURE 5. LINEAR DISCIPLINE JOINT DENSITIES WITHOUT
DETAILED BALANCE

TABLE 1. LINEAR DISCIPLINE JOINT DENSITY STATISTICS

Statistic Without DB. With DB.

µZ -1.32520 -1.31487

µZ|Y -1.32963 -1.32518

µY 0.66374 0.67129

µY |Z 0.66241 0.67155

σ2
Z 1.60245 1.31144

σ2
Z|Y 1.60549 1.31786

σ2
Y 1.09224 0.32569

σ2
Y |Z 1.09772 0.33019

ρ
(
Z, Y | Z

)
0.82719 0.49711

ρ
(
Y, Z | Y

)
0.29484 0.50401
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FIGURE 6. LINEAR DISCIPLINE JOINT DENSITIES WITH DE-
TAILED BALANCE

We end the discussion of the linear case by noting that if
we had information about a system level quantity of interest, Qr,
here related to Z for example, we could ensure that we match
the statistics of the system level quantity of interest by simply
matching the statistics of Z. For a more complex quantity of
interest, say something that is a function of Z and Y , we could
proceed with our optimization approach described in Section 5.

6.2 Nonlinear Case
The nonlinear example problem we use to demonstrate our

method for quantifying model discrepancy in a coupled multi-
physics system is a two-dimensional airfoil in airflow from
Ref. 29 and shown in Fig. 7. As described in Ref. 29, the air-
foil is supported by two linear springs attached to a ramp. The
airfoil is permitted to pitch and plunge. The lift, L, and the elastic
pitch angle, φ , are the coupling variables and also the outputs in
this system. A complete description of the problem can be found
in Ref. 29 and for the sake of completeness, the equations and
variable values are presented in the appendix.

For this demonstration, we assume we have real-world data
regarding the lift of the airfoil. This information suggests that
the distribution of the lift is, Lr ∼N (502,345), where the units

FIGURE 7. SIMPLE COUPLED AERODYNAMICS-
STRUCTURES SYSTEM ADAPTED FROM REF. 29.

are in Newtons. Using Algorithm 1, coupled with an optimiza-
tion routine, we solve Problem 8, with J set as in Eqn. (9). The
results of this process are shown in Fig. 8. The figure presents
scatterplots of the joint distributions arrived at by stopping after
the aerodynamics model and after the structures model respec-
tively. By inspecting the figures, we see that the detailed balance
condition has resulted in joint densities that are approximately
the same. We present quantitative results of the statistics of the
coupling variables, L and Φ, as well as the values of the dis-
crepancy variances, σ1 and σ2, in Tab. 2. Here we see that the
normal distribution of L approximated by our method is approx-
imately the same as that of the real-world data associated with
that quantity of interest. We further note that, though this system
is nonlinear, our variational approach, staying with the family of
normal distributions, is still able to ensure approximate satisfac-
tion of detailed balance and match the real-world information.
A more careful look at the limitations associated with assumed
normality in the coupling variables is a topic of future work.

7 CONCLUSIONS
We have presented an approach to quantifying model dis-

crepancy in disciplinary models of coupled multi-physics sys-
tems using system level discrepancy information. Our approach
was based on a Gibbs sampling procedure and our analysis re-
vealed the significance of considering a detailed balance con-
dition in our Markov chain model of uncertainty propagation
through a coupled system. We employed a variational approach
to quantifying model discrepancy in disciplinary outputs and as-
sumed the discrepancies and the coupling variables to be nor-
mally distributed. Our results for a nonlinear, feedback coupled
system suggest that there are times when these assumptions are
reasonable. It is a topic of future work to examine when assump-
tions of normality are too restrictive.
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FIGURE 8. AERODYNAMICS-STRUCTURES NONLINEAR DIS-
CIPLINE JOINT DENSITIES WITH DETAILED BALANCE
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Appendix A: Aerodynamics-Structures System

Aerodynamics Model

L = qSCL

θ = φ +ψ

CL = uθ + r
[
1− cos

[
(π/2)(θ/θ0)

]]

Structures Model

R1 = L/(1+ p) R2 = Lp/(1+ p)

d1 = R1/k1 d2 = R2/k2

φ = (d1−d2)/[C(z2− z1)]
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Aerodynamics-Structures Data

z1 = z1/C z2 = z2/C a = a/C

h1 = a− z1 h2 = z1−a p = h1/h2

S = BC B = 100cm C = 10cm

z1 = 0.2 z2 = 0.7 k1 = 4000Ncm−1

k2 = 2000Ncm−1 a = 0.25 q = 1Ncm−2

θ0 = 0.26rad ψ = 0.05rad u = 2π

r = 0.9425

11 Copyright © 2016 by ASME




