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While the growing number of computational models available to designers can solve a
lot of problems, it complicates the process of properly utilizing the information provided
by each simulator. It may seem intuitive to select the model with the highest accuracy,
or fidelity. Decision makers want the greatest degree of certainty to increase their efficacy.
However, high fidelity models often come at a high computational expense. While compar-
atively lacking in veracity, low fidelity models do contain some degree of useful information
that can be obtained at a low cost. We propose a method to utilize this information to gen-
erate a fused model with superior predictive capability than any of its constituent models.
Our methodology estimates the correlation between each model using a model reification
approach that eliminates the observational data requirement. The correlation is then used
in an updating procedure whereby uncertain outputs from multiple models may be fused
together to better estimate some quantity or quantities of interest.

I. Introduction

Advancements in computing capability, mathematics, and a greater understanding of the physical world
has facilitated the development of mathematical models that can simulate many natural systems. Com-

puter modeling has become ubiquitous in the aerospace industry in response to the increasing complexity and
performance requirements of today’s aircraft. These simulators are incredibly useful for gaining insight into
complex, dynamic systems such as those modeled using Computational Fluid Dynamics (CFD) and Finite
Element Analysis (FEA). However, there is a problem with using computational models. As the statistician
George Box famously stated, “All models are wrong, but some are useful.”1 This fact yields some degree of
uncertainty of the output of a model. Minimizing this uncertainty is critical to achieving accurate predictions
of real-world performance.

There are many sources of uncertainty that exist in the modeling process including parameter uncertainty,
model inadequacy, residual variability, parametric variability, observation error, and code uncertainty2.
Section 2.1 from Ref. [2] has defined these types of uncertainty as follows. Parameter uncertainty refers to
the uncertainty associated with code inputs. Model inadequacy is attributed to the discrepancy between
what is predicted by the model and the real-world results, even when the true values for all model inputs
are known. Due to random variability in natural processes, the output is compared to the mean value of the
real-world process. Parametric uncertainty is introduced by allowing the input parameters to vary according
to some joint distribution. Observation error refers to the imperfection in measuring the real-world process.
Code uncertainty is included in cases where it is impractical to run the code for every possible configuration
of the input. While relevant uncertainties will be accounted for, this paper will primarily be focused on
reducing uncertainty due to model inadequacy.

For many applications, there exist multiple models that simulate the same system. These models typically
rely on different mathematical formulae or make varying assumptions that simplify the problem. This leads
to models with varying degrees of discrepancy from the true output, or fidelity. Generally speaking, a high
fidelity model is more accurate than a low fidelity one at the cost of computational expense. Intuitively,
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using the high fidelity model leads to a reduction in uncertainty due to model inadequacy. However, a low
fidelity model can still provide information that should be considered in any decision making process. A
method is needed to fuse the information from both models to create a single, fused distribution for the
quantities of interest.

Information fusion is a broad field with diverse applications from imaging to control theory. Ref. [3] defines
information fusion as “the study of efficient methods for automatically or semi-automatically transforming
information from different sources and different points in time into a representation that provides effective
support for human or automated decision making.” While the reification approach clearly falls into the
information fusion research domain under this definition, it has a specific use case for reducing uncertainty due
to model inadequacy. Techniques available for this application include the adjustment factors approach4–7,
Bayesian model averaging8–14, fusion under known correlation15–17, and fusion under unknown correlation
using Covariance Intersection18,19. Our approach adapts the methods for fusion under known correlation to
cases where correlation is unknown using model reification.

The term reified analysis was coined by Goldstein and Rougier in 200920. While our methodology shares
a similar nomenclature and purpose, it is very different in its implementation. The word reify means to
consider something to be real. As detailed in the following sections, our approach generates synthetic data
that is treated as real-world data. It is in this regard that we consider the term reification an apt description
of the method.

This paper outlines a methodology to create a fused distribution using data from models of varying
fidelity. First, correlation between the models is estimated if it is unknown. Assuming that there is no
existing data to estimate the correlation, synthetic data is generated by assuming one model to be the truth
model. Given an estimate for correlation, traditional update rules can be used to create a fused distribution.
There are many update rules used for combining information from multiple models. This method will make
use of the method in Ref. [17]. Details of these methods are included in Section II. Section III outlines our
methodology. Demonstrations using three test problems are included in Section IV. Section V presents our
conclusions drawn from this method.

II. Background

For this paper we will specify the model as a physics-based numerical simulation of a real-world process.
Models such as these cannot possibly be perfectly accurate, thus introduce varying degrees of uncertainty
due to model inadequacy. We represent this model as a function f(x), where x is a set of inputs. This
function f maps the inputs to some output y. To account for model inadequacy, an additive term δ(x) is
included. This discrepancy term can vary dependent upon the inputs. The model can be represented by the
equation

y = f(x) = f̄(x) + δ(x), (1)

where f̄(x) is the model output at a given input x. It is also the mean for model f(x) if δ(x) is unbiased.
If the model simulates a complex process, it is difficult to reliably collect accurate data to be compared

to the model over the entire design space. This means that quantifying model inadequacy will often rely on
expert elicitation. We assume that this leads to a normal distribution of δ(x) with some mean and variance.
The variance depends on the fidelity of the model. High fidelity models will generally have lower variance
than models of lower fidelity. However, the discrepancy term’s dependence upon the input can lead to areas
in the design space where the lower fidelity model has a lower variance than the high fidelity model. Rigorous
quantification of model inadequacy is an area of active research with many proposed solutions21,22.

Our method is to be used in situations where more than one model exists that is able to simulate a given
quantity or quantities of interest. The information produced by these models will be fused such that the new
uncertainty will be less than any of its constituent models. There are two ways to approach the combination
of two distributions. The first is to believe that each model has some probability of being true. This leads
to using methods such as Bayesian model averaging and adjustment factors approach to create a weighted
average of the two models. The second approach is to assume that each model contains some amount of
information that can be used to estimate the quantity of interest. Under this assumption it is possible to
use information fusion methods under known or unknown correlation.

Accounting for correlation is critical in information fusion. Assumed statistical independence can lead
to overconfident estimates and skewed results in cases where redundant information was used by one of the
sources23. Consider this problem from a distributed data fusion perspective. Distributed data fusion refers
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to a system of interconnected sensor nodes without centralized data processing. Instead, each individual
node performs the estimation of the state space using the data provided by the nodes it is connected to.
Sensors can be added to the network without the need for reconfiguring some centralized controller.

The major drawback to a distributed data fusion scheme is the redundancy problem24. Decentralized
data fusion has a propensity for data to propagate back to sensors that have already used it. This means the
data is double-counted and the estimate becomes corrupted. To better understand this problem, consider
the following hypothetical system:

1. Two self-driving cars are equipped with a vehicle-to-vehicle (V2V) communication system that can
share data from vehicle sensors, including data interpreted by the vehicles’ cameras.

2. Camera 1 sees an anomaly at location x. The machine vision system reports that one of the possibilities
is that the anomaly is a cyclist. There are many different possibilities that the computer interprets from
the image, but the vehicle’s algorithm places a high importance on human avoidance. This triggers
the V2V system to broadcast that there is a slight possibility of a cyclist at location x.

3. A similar camera on Vehicle 2 receives the message and scans location x. It sees a similar anomaly and
confirms that there is something at location x, consistent with the proposal generated by Camera 1.
However, Vehicle 2 is not aware that the confirmation was based on the same visual information. This
leads Vehicle 2’s computer to believe it has just independently confirmed the observation of a cyclist
causing the V2V system to broadcast a high probability of a cyclist at location x.

4. Vehicle 1 receives information that there is a high probability of a cyclist at location x. The system
believes this is a confirmation of its earlier proposal of a cyclist, leading to immediate evasive action
to avoid what was not actually a cyclist.

Figure 1. Relationship between two physics-based numerical sim-
ulations.

This hypothetical situation clearly shows
how ignorance of the correlation of data can
lead to overconfident assumptions and poten-
tially dangerous actions. Due to the nature of
simulating the same physical system, simula-
tors may rely on the same formulae or physi-
cal assumptions. This redundant information
is equivalent to the redundancy problem ex-
perienced by distributed data fusion and ex-
periences the same overconfidence issue. A
graphical representation of this relationship is
shown in Fig. 1. This simplified representation
is analogous to the basic statistical inclusion-
exclusion principle, |A∪B| = |A|+|B|−|A∩B|,
which demonstrates the necessity of accounting
for correlation.

II.A. Fusion Under Known Correlation

Although this method is capable of fusing in-
formation from any number of models, for sim-
plicity we will assume the case where there exists two models f1(x∗) and f2(x∗) that both estimate the same
quantity of interest. Following Eq. (1), f1(x∗) = f̄1(x∗) + δ1(x∗) and f2(x∗) = f̄2(x∗) + δ2(x∗), where x∗

represents a single input configuration. As shown in Refs. [18, 25], the standard deviation for each model
corresponds to the following equations, f̃1(x∗) = f1(x∗) − f̄1(x∗) and f̃2(x∗) = f2(x∗) − f̄2(x∗). The fused
models can be represented by the equation

y = k1f1(x∗) + k2f2(x∗), (2)

where k1 and k2 are scalars such that k1 + k2 = 1. The purpose of this method is to reduce uncertainty
in the output, so the scalars are chosen such that the variance of y is minimized. This is done by solving
Eq. (3) for k1 and k2 under the assumption f1(x∗) ∼ N (f̄1(x∗), σ2

1) and f2(x∗) ∼ N (f̄2(x∗), σ2
2).

min
k

kTΣk subject to k1 + k2 = 1, (3)
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where
k = [k1, k2]T and

Σ =

[
E[f̃1(x∗)2] E[f̃1(x∗)f̃2(x∗)]

E[f̃2(x∗)f̃1(x∗)] E[f̃2(x∗)2]

]
=

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

Σ is the covariance matrix that correlates the two models. Recall that fusion under known correlation
requires a known correlation coefficient, ρ. The solution of the minimization yields a fused model, y, that
has a mean given by

E[y] =
(σ2

2 − ρσ1σ2)f̄1(x∗) + (σ2
1 − ρσ1σ2)f̄2(x∗)

σ2
1 + σ2

2 − 2ρσ1σ2
, (4)

and a variance of y given by

Var(y) =
(1− ρ2)σ2

1σ
2
2

σ2
1 + σ2

2 − 2ρσ1σ2
. (5)

The detailed proof for this set of equations is shown in Ref. [17].
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Figure 2. Trends in the fused estimate due to changes in variance and correlation coefficient. The fused model is the
black solid line. Models 1 and 2 are blue and red, respectively.

An analysis of Eq. (4) and Eq. (5) reveals some interesting behaviors of this method as illustrated in
Fig. 2. The first row demonstrates what happens to the fused model as the variance of one model decreases.
Note that the correlation coefficient is set to zero for this case. It is evident that the fused estimate tends
toward the model of higher fidelity. Also, the confidence in the fused estimate decreases as the variance
of the second model decreases. The second row demonstrates the effect of the correlation coefficient when
the variances are not equal. As the correlation coefficient increases, the fused estimate tends toward the
model of higher fidelity. As the correlation continues to increase, the fused model moves beyond that of the
higher fidelity model. This aligns with the intuition that models that are nearly identical would both produce
estimates that are too high or too low. Another trend not illustrated is the effect of the correlation coefficient
on models with similar variance. As the correlation coefficient increases, the fused variance increases. As
the value approaches one, the variance is equal to that of its constituent models because no new information
has been added.

It is important to note that, while this example focused on the use of two models, this method is
generalized for any number of models. Ref. [17] also proves the generalized versions of Eq. (4) and Eq. (5),
given by Eq. (6) and Eq. (7). The fused mean in the generalized approach is shown to be

E[y] =
eTΣ−1f̄(x∗)

eTΣ−1e
, (6)
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where e = [1, . . . , 1]T , Σ−1 is the inverse of the covariance matrix, and f̄(x∗) = [f̄1(x∗), . . . , f̄n(x∗)]T , given
n number of models used. The variance of the fused estimate is shown to be

Var(y) =
1

eTΣ−1e
. (7)

II.B. Fusion Under Unknown Correlation

Covariance ellipses for
two information sources

Covariance ellipses for 
fused estimates under
different correlation
assumptions

Figure 3. Geometric interpretation of the Covariance In-
tersection algorithm.

As shown in the previous section, the correlation co-
efficient plays a significant role in the distribution of
the fused model. There are other methods that utilize
correlation to perform information fusion. One should
be selected to validate the reification approach. Tra-
ditionally, a Kalman filter would be used due to its
ability to achieve the minimum mean squared esti-
mates26. However, that property is contingent upon
perfectly knowing the mean and covariance of the
models. Covariance Intersection Algorithm (CI) was
chosen for its remarkable consistency irrespective of
actual correlation.

This generalized method forms its estimates using
the convex combination of means and covariances in
the inverse covariance space18. It can also account for
models with multiple quantities of interest. Similar
to the previous section, we will consider two models
f1(x∗) and f2(x∗) with means f̄1(x∗) and f̄2(x∗) and
deviations f̃1(x∗) and f̃2(x∗). The covariance matrix,
P̃, is redefined as follows

P̃ =

[
E[f̃1(x∗)f̃1(x∗)T ] E[f̃1(x∗)f̃2(x∗)T ]

E[f̃2(x∗)f̃1(x∗)T ] E[f̃2(x∗)f̃2(x∗)T ]

]
.

Unlike fusion under known correlation, CI utilizes a geometric interpretation called the covariance el-
lipse25. The ellipse is created using the inequality

BQ(c) , {x : xTQ−1x < c}, (8)

where Q is a positive definite matrix, and BQ(c) is the boundary of the ellipse at level c. Thus, if Q1 < Q2,
then BQ1

(c) ⊂ BQ2
(c). To use the graphical interpretation of Covariance Intersection, ellipses are first plotted

for P̃11 and P̃22 for a given level c. The covariance ellipse for P̃yy is plotted, where P̃yy is the covariance of

the fused estimate. This should always be a subset of both P̃11 and P̃22, for all values of P̃12. This is shown
graphically by the P̃yy ellipse remaining inside the intersections of the P̃11 and P̃22 ellipses. An illustration
of this approach is shown in Fig. 3.

Constructing a linear update rule is necessary to fuse information sources such that the fused estimate
ellipse encloses all of the possible ellipses for the fused estimates under any correlation assumption. The
closer this updated ellipse encloses the intersecting region, the more information is incorporated into the
estimate. This condition ensures the correlation coefficient is conservatively estimated, which is the primary
benefit of this method over Kalman filtering. Ref. [18] defines the update equations as

P̃−1
yy = ωP̃−1

11 + (1− ω)P̃−1
22 (9)

P̃−1
yyE[y] = ωP̃−1

11 f̄1(x∗) + (1− ω)P̃−1
22 f̄2(x∗), (10)

where ω ∈ [0, 1] controls the weights applied to each model. This update ensures that the covariance ellipse
of P̃qq always encloses the intersection of P̃11 and P̃22, as shown in Fig. 4 for varying values of ω. ω is
chosen such that the trace or determinant of Pyy is minimized. We chose to minimize the trace for our
comparison to this approach.
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Covariance ellipses for 
two information sources

Covariance ellipses for 
fused estimates with 

different values of ω

Figure 4. The covariance ellipse for any choice of ω en-
closes the intersection of the covariance ellipses of the in-
formation sources.

Due to the nature of the Covariance Intersection
algorithm, it has a tendency to discard lower fidelity
information sources to achieve the most conservative
estimate possible in cases with scalar quantities of in-
terest. It requires that the information source with
the highest fidelity be used for the fused estimate.
While this does allow the best model to be chosen at
all points in the design space, this approach leads to
a loss of information that could be used to better es-
timate the model output if the correlation coefficients
were known. The next section outlines our method-
ology for estimating correlation and creating a fused
distribution.

III. Methodology

This section details our methodology for the com-
plete process of fusing information from multiple mod-
els. We assume no observational data is available. To
mitigate this problem we use model reification to gen-
erate synthetic data. As discussed previously, model
reification refers to the process of treating one of the

models as a “truth model.” This means that we assume the data generated by the model represent the true
quantities. We will use this data to estimate the correlation between the errors of different models. The
process is then repeated for each model.

We will again assume the case where only two models, f1(x) and f2(x), exist for estimating some quantity
of interest, y. This can be estimated by using y = f̄1(x) + δ1(x) or y = f̄2(x) + δ2(x). In this instance,
δ1(x∗) ∼ N (0, σ2

1) and δ2(x∗) ∼ N (0, σ2
2). Given this information and some input configuration x∗ we can

estimate the correlation of the errors and use Eqs. (4) and (5) to estimate the mean and variance of the
new fused estimate.

We estimate the error of each model with respect to the true quantity of interest using reification.
Assuming simulator f1(x) is chosen to reify, the deviation for the other model can be calculated using the
following equations

f̃1(x∗) = f1(x∗)− f̄1(x∗) = δ1(x∗) (11)

f̃2(x∗) = f2(x∗)− f̄2(x∗) (12)

= f̄1(x∗)− f̄2(x∗) + δ1(x∗), (13)

where Eq. 13 follows from the fact that if we reify simulator 1, the model inadequacy of simulator 2 is given
as δ(x∗) = f̄1(x∗)− f̄2(x∗) + δ1(x∗). The mean squared errors are then given as

E[f̃1(x∗)2] = E[δ1(x∗)] = σ2
1 (14)

E[f̃2(x∗)2] = E[(f̄1(x∗)− f̄2(x∗))2] + E[δ1(x∗)] (15)

= (f̄1(x∗)− f̄2(x∗))2 + σ2
1 , (16)

and the covariance is given as
E[f̃1(x∗)f̃2(x∗)] = σ2

1 . (17)

Thus, under the assumption that simulator 1 has been reified, the correlation coefficient is given as

ρ1(x∗) =
σ2

1

σ1σ2
=

σ1√
((f̄1(x∗)− f̄2(x∗))2 + σ2

1

, (18)

The subscript under the correlation coefficient denotes which model was reified. Under these assumptions, the
other information available to access model fidelity is the model inadequacy. To account for the uncertainty
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in which one is the highest fidelity, model 2 is also reified to estimate ρ2(x∗). The average correlation between
the two models can then be estimated using the variances as follows

ρ̄(x∗) =
σ2

2

σ2
1 + σ2

2

ρ1(x∗) +
σ2

1

σ2
1 + σ2

2

ρ2(x∗). (19)

This average correlation can then be used in Eqs. (4) and (5) to estimate the mean and variance of the new
fused estimate.

It should be noted that all calculations were performed using a precise input configuration, x∗. However,
such precision of input variables into a model is unrealistic. Estimates in the region surrounding the input
configuration x∗ could provide useful information to describe the true correlation between models. There
is some possibility that the mean and variance of the quantity of interest output by both simulations are
identical at x∗. This would produce a correlation coefficient of 1, which is highly unlikely to be true at all
points in the surrounding region of the input space. It would also add no information to the fusion process.
Another benefit to interrogating the region surrounding the point is to account for holes in the input space.
For example, many complex models will have input configurations that cause the simulator to fail and yield
no output. To mitigate these risks, the correlation will be averaged in a region surrounding x∗. The optimal
size of this neighborhood is a topic of future work. We assume that the size is known.

Applying this to Eq. (18), the new estimate for correlation after the reification of model 1 is

ρ1(S(x∗)) = ES(x∗)[ρ1(x)] (20)

= ES(x∗)

[
σ1√

((f̄1(x)− f̄2(x))2 + σ2
1

]
,

where S(x∗) is the region surrounding x∗. For a model with few input variables, this value can be calculated
using standard integration methods. However, the integral is subject to the curse of dimensionality, making
it intractable as the number of inputs increases. We recommend using a Monte Carlo approach to obtain
the solution. The steps for this method are shown in Algorithm 1.

Algorithm 1: Correlation Estimation with Simulator 1 Reified

1: Uniformly sample f1(x) m times in S(x∗)

2: Add model inadequacy samples [δ(x1), . . . , δ(xm)] to the simulator samples [f1
1 (x1), . . . , f1

1 (xm)]

3: Calculate ρi1(xi) = σ1√
((f̄1(xi)−f̄2(xi))2+σ2

1

for i = 1 to m

4: Estimate ρ1(S(x∗)) ≈ 1
m

∑m
i=1 ρ

i
1(xi)

5: Repeat steps 1 - 4 to estimate ρ2(S(x∗))

6: Calculate ρ̄(S(x∗)) =
σ2
2

σ2
1+σ2

2
ρ1(S(x∗)) +

σ2
1

σ2
1+σ2

2
ρ2(S(x∗))

It should be noted that the methodology shown was assumed to be two models to simplify the explanation,
but the method is generalizable to any number of models. We also simplified the model inadequacy. Variance
can be added throughout the input space by simply adding the dependence on x in Eqs. (16) and (20). The
precise specification of this variance can be done through expert elicitation or experimental data. Although
experimental data is not necessary for the reification process, it can be used to validate the models and aid
in the quantification of model inadequacy. The following section is a demonstration of the method.
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IV. Demonstration

In this section we present the preliminary results of three demonstrations of our methodology. The first
is a simple analytical problem with one-dimensional input and output. The second and third demonstrations
use data from two computational fluid dynamics simulators, XFOIL and Stanford University Unstructured
(SU2). One demonstration has a single input and output, while the other has two-dimensional input and
output. Details regarding these simulators and their implementation is discussed in Section IV.B.

There are several assumptions and caveats to these examples that must be discussed. In order to quantify
our method’s predictive capability, the true value of the quantity of interest estimated by the simulators must
be known. We chose to specify some “truth model” for each of these demonstrations that can be compared
against to determine the method’s accuracy. The creation of this model is discussed for each example. It is
important to note that such a model would never exist in real-world situations. Access to a perfect model
precludes the need for other simulators.

Our methodology presumes expert elicitation will be used to assess model fidelity. This is not possible
in the case of an analytical test problem. Also, we do not have the expertise to make accurate estimates of
the fidelity level of XFOIL and SU2. Given that we specify a model that represents the true quantities of
interest, this data can also be used to estimate model inadequacy. However, it would be unrealistic to have
complete knowledge of the model inadequacy at all points in the design space. To keep the demonstration
as realistic as possible the discrepancy between the models and the true values was examined at only a few
points in the design space. A Gaussian process was then employed to perform a regression over the design
space using those values as training points.

Gaussian processes are a powerful statistical modeling tool based on the principles of Gaussian distribu-
tions. A Gaussian process can be thought of as a generalized version of the Gaussian distribution that is
applied over a continuous input space. Put simply, it is an infinite-dimensional normal distribution where
each set of inputs has a corresponding normal distribution that can be obtained using mean and covari-
ance functions27. Gaussian processes were first proposed as a regression technique by O’Hagan in 197828.
Gaussian process regression, much like standard regression analysis, is the process of fitting a function to
represent a given dataset. The field of geostatistics coined the term kriging to describe this method29. The
benefit of using a Gaussian process is that it can model statistics at every point in a continuous design space
while being computationally tractable. When working with sparsely populated data sets a Gaussian process
can account for the changing variance in the probability distributions where data is unavailable, as is the
case for most computationally expensive models.

We account for three types of uncertainty when performing this Gaussian process regression: model
inadequacy, observation error, and code uncertainty. The model inadequacy is estimated by the difference
between the true values and the model at the points chosen to interrogate. Observation error is added to
these points to account for imperfection in measuring real-world processes. Code uncertainty is included
between the selected data points. Gaussian process regression allows all three of these uncertainties to be
combined and quantified for all points in the design space.

The discrepancy term can be biased or unbiased. A biased discrepancy term would allow the model output
to be adjusted up or down to better fit the truth. An unbiased discrepancy term would be of mean zero
and only increase the variance of the model. While both may be used, unbiased estimations are much more
feasible in practice. Experts can simply claim that a model loses accuracy in some area of the domain, rather
than know the direction and magnitude of the model’s deviation from truth. For this reason, the unbiased
estimator was chosen for this example. This also makes the problem more challenging as information about
the error is unused and will be a good test of the capability of the model reification approach.

IV.A. Analytical Example

We consider two simulators with a one-dimensional input. A “truth model” is given to estimate the model
inadequacy and demonstrate how well the method can predict the true quantity of interest. We compare
the results of our reification approach, the Covariance Intersection algorithm, and the assumption of zero
correlation in the fusion process.

We assume the truth model is defined as

truth(x) = sin(x) + noise, (21)
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where noise ∼ N (0, 0.12). Gaussian noise is added to simulate uncertainty due to observation error that
would exist in a real-world problem. The two simulators are defined as

f1(x) = (x− 0.1)− (x− 0.1)3

3!
+

(x− 0.1)5

5!

f2(x) = (x + 0.3)− (x + 0.1)3

3!
+

(x− 0.1)5

5!
.
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Figure 5. Output from each simulator along with the truth
model.

These are simply modified versions of the Taylor
series approximation of sin(x). The domain of x
is limited to −π ≤ x ≤ π. An illustration of the
truth model and two simulators is shown in Fig. 5.
In this case, model 1 could be considered the high
fidelity model. However, model 2 becomes much
more accurate than model 1 when x > 2. It is evi-
dent that using only the high fidelity model would
lead to significantly less accurate information than
a fused model.

Accurately imitating a real-world example was
an important consideration when quantifying the
model discrepancy. Given the fact that no real-
world truth models exist, perfectly quantifying the
discrepancy in the model at every point would be
unrealistic. Instead, we chose to uniformly select
20 points in the input space to calculate the error
by taking the difference between the truth model
and the simulator. This mimics a situation where a limited amount of test data is used to validate a simulator.
This test data often has uncertainty due to observation error, so that was incorporated into the truth model.
Code uncertainty is introduced in the areas between the 20 points where the models were not run.

Model 1 Discrepancy
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Figure 6. Plot of model 1 discrepancy with two sigma con-
fidence intervals.

Figure 7. Mean and two sigma confidence interval of model
1 and model 2.

The construction of the unbiased estimation of model inadequacy begins with calculating the error at
each of the 20 points selected previously, such that error = |truth(x∗)− f(x∗)|. Taking the absolute value
creates the unbiased estimation. A Gaussian process regression is then performed using these error values
as training points to estimate the model discrepancy at all points in the design space. Gaussian noise is
added to compensate for the observation error uncertainty in the truth model, and code uncertainty is added
between the observation points to produce the plot in Fig. 6. The gray shaded area represents the upper
half of a two sigma confidence interval. It should be clarified that this is a plot of the uncertainty of model
1 and has its own standard deviation, σGP , due to the various types of uncertainty. The variance of model
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1 is then defined as

σ2
model = |truth(x∗)− f(x∗)|2 + σ2

GP . (22)

This process is done for both models to produce Fig. 7.

Figure 8. Mean and two sigma confidence interval of model 1 and model 2.

The last item needed in Algorithm 1 is S(x∗), or the neighborhood of points around x∗. This was chosen
to be 10 points uniformly sampled from −0.05 ≤ x∗ ≤ 0.05. This can be modified depending on the degree
of non-linearity of the design space. Algorithm 1 can now be performed to estimate the correlation at all
points in the design space. This correlation is used in Eqs. (4) and (5) to estimate the mean and variance of
the new fused estimate. Doing this over the entire design space yields Fig. 8, which compares the result to
Covariance Intersection algorithm and fusion assuming zero correlation.

Comparison of Mean Squared Error (MSE)

Fusion Method MSE

Model 1 0.0227

Model 2 0.0865

No Correlation 0.0139

Covariance Intersection 0.0120

Reification 0.0095

Table 1. Mean squared error for models 1 and 2 without fusion, the no correlation case, the Covariance Intersection
algorithm, and the reification approach.

There are several notable features illustrated in this plot. Due to this being a single dimension problem,
Covariance Intersection always selects the model with the least variance at all points in the design space.
While this does yield consistent results, it is not effectively leveraging information from both models. From
−π ≤ x∗ . −2 the reification estimate is significantly better than Covariance Intersection and assuming zero
correlation. This is similar to Fig. 2(f) where two correlated models allow for a prediction that is skewed
beyond the higher fidelity model. However, this property is not always beneficial as shown from −2 . x∗ . 2
when the true value is actually between the two correlated models. Overall, the reification approach performs
very well in this problem as shown in Table 1, where a comparison of mean squared errors (MSE) between
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each method and truth is presented. Here, MSE is calculated by sampling a large number of uniformly
spaced points in the input space (1,000 in this case).

IV.B. 1D CFD Demonstration

(a) XFOIL (b) SU2

Figure 9. Example outputs of NACA 0012 airfoil from XFOIL and SU2.

This demonstration uses the computational fluid dynamics programs XFOIL30 and SU231 as the two
simulators. The airfoil of interest is the NACA 0012, a common validation airfoil. The “truth” model used
to validate the method and estimate model discrepancy is real-world wind tunnel data of the NACA 0012
airfoil32,33. For this one dimensional case the Mach number is fixed at 0.30 and the angle of attack will vary
from -2.2 to 13.3 degrees. The quantity of interest is the coefficient of lift.
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Figure 10. Coefficient of lift estimates from SU2, XFOIL, and
wind tunnel data.

XFOIL and SU2 are both very powerful CFD
simulators, but have different performance capa-
bilities in various flow regimes. XFOIL is an
airfoil solver for the subsonic regime that com-
bines a panel method with the Karman-Tsien com-
pressibility correction for the potential flow with a
two-equation boundary layer model. This causes
XFOIL to overestimate lift and underestimate
drag34. SU2, for the case of airfoil analysis, uses a
finite volume scheme, the details of which may be
found in Ref. [31]. SU2 was set to use Reynolds-
averaged Navier-Stokes (RANS) method with the
Spalart-Allmaras turbulence model. This allowed
SU2 to be significantly more accurate than XFOIL
in the more turbulent flow regimes at higher values
of Mach number and angle of attack. This accu-
racy comes with orders of magnitude increase in
computational expense. Fig. 9 shows an example
output of the two simulators that illustrates the
difference in fidelity levels. To validate and quantify this expectation, wind tunnel data from NASA and
AGARD was used to construct a “truth model” by interpolating values between the given data points. Like
the previous example, this also allows our methodology to be validated against the Covariance Intersection
algorithm and fusion with zero correlation. A comparison between SU2, XFOIL, and the truth model is
shown in Fig. 10. As expected, SU2 performs better than XFOIL at higher angle of attack.
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SU2 Model Discrepancy
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Figure 11. Gaussian process regression of model discrep-
ancy of SU2.

Figure 12. SU2 and XFOIL coefficient of lift predictions
with two sigma confidence interval.

Following the same procedure as the previous demonstration, the model discrepancy is estimated by
taking the difference between the wind tunnel data and our models. The wind tunnel data has 11 data
points at Mach 0.30. XFOIL and SU2 are run at these points and the difference is used as training data for
a Gaussian process regression. Code uncertainty and uncertainty due to observation error were added into
the GP as shown in Fig. 11. Following Eq. (22), the uncertainties were incorporated to produce Fig. 12.

Similar to the previous example, 10 points were sampled uniformly from −0.05 ≤ x∗ ≤ 0.05 for S(x∗),
or the neighborhood of points around x∗. This can be modified depending on the degree of non-linearity
of the design space or if the CFD solvers have trouble converging to a solution at x∗. Algorithm 1 can be
performed to estimate the correlation at all points in the design space. This correlation is used in Eqs. (4)
and (5) to estimate the mean and variance of the new fused estimate. Doing this over the entire design space
yields Fig. 13, which compares the result to the Covariance Intersection algorithm and fusion assuming zero
correlation.

There are two important things to note in this plot. First, the reification method performs better than
Covariance Intersection and the zero correlation assumption in the majority of the design space. This is
again due to the property illustrated in Fig. 2(f) where two correlated models allow for a prediction that is
skewed beyond the higher fidelity model. Second, the areas where the two models cross exhibits interesting
characteristics due to their mean and variance approaching nearly identical values as can be seen in Fig. 12.
A deeper exploration of this phenomena is a topic of future work.

Table 2 shows the mean squared error for each method as well as the individual simulators. The reification
method yields a 66% reduction in error compared to the Covariance Intersection algorithm, which always
uses the best model. This result shows that the reification method has the potential to offer significant
increases in accuracy for situations where multiple models are available.

Comparison of Mean-Squared Error (MSE)

Fusion Method MSE

XFOIL 0.0313

SU2 0.0149

No Correlation 0.0192

Covariance Intersection 0.0149

Reification 0.0050

Table 2. Mean squared error for XFOIL and SU2 without fusion, the no correlation case, the Covariance Intersection
algorithm, and the reification approach.
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Figure 13. Results of no correlation case, Covariance Intersection algorithm, and the reification approach.

IV.C. 2D CFD Demonstration

This demonstration again uses the computational fluid dynamics programs XFOIL and SU2 as the two
simulators. The “truth” model used to validate the method and estimate model discrepancy is the full set
of real-world NACA 0012 wind tunnel data, which includes 68 data points throughout the design space. For
this demonstration, the outputs of interest will be the lift coefficient, CL, and the drag coefficient, CD. The
inputs for the analysis will be the Mach number, M , and the angle of attack, α. The Mach number varies
from 0.15 to 0.75 and the angle of attack will vary from -2.2 to 13.3 degrees.

As discussed in the previous example, SU2 is considered to be the higher fidelity of the two models. We
would expect to see greater accuracy relative to XFOIL as Mach number and angle of attack increases due to
the introduction of more turbulent flows. To validate and quantify this expectation, wind tunnel data from
NASA and AGARD was used to construct a “truth model” using spline interpolation to determine values
between the given data points. Like the previous example, this also allows our methodology to be validated
against Covariance Intersection algorithm and fusion with zero correlation.

The procedure for a two dimensional problem is very similar to the single dimension case computationally.
However, it is much more challenging to illustrate the models concurrently, so there will be fewer plots shown
in this demonstration. The plots included show the model mean as a colored surface, two sigma confidence
interval as a black mesh, and data points as black squares. There is a high Mach, high angle of attack section
that is omitted from plotting due to the simulators’ inability to simulate flows in this regime.
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Figure 14. Gaussian process regression of model discrep-
ancy of SU2 coefficient of lift with two sigma confidence
interval mesh.

Figure 15. SU2 coefficient of lift predictions with two sigma
confidence interval mesh.

Following the same procedure as the previous demonstration, the model discrepancy is estimated by
taking the difference between the wind tunnel data and our models. XFOIL and SU2 are run at these
points and the difference is used as training data for a Gaussian process regression. Code uncertainty and
uncertainty due to observation error were added into the GP as shown in the SU2 coefficient of lift discrepancy
plot in Fig. 14. Following Eq. (22), the uncertainties were incorporated to produce Fig. 15.

Figure 16. Results of the reification method for CL. XFOIL
is yellow, SU2 is blue, truth is green, the reification method
mean is red, and its two sigma confidence interval is the black
mesh.

The neighborhood of points around x∗, S(x∗),
is different than that of the previous two examples
due to the fact that x∗ is two dimensional. Also,
the dimensions have very different scales. It was
chosen to select 10 points uniformly in both dimen-
sions and create a square mesh of points around x∗.
The angle of attack dimension was sampled from
−0.05 ≤ x∗ ≤ 0.05 to be consistent with the pre-
vious example, while the Mach number dimension
was sampled from −0.001935 ≤ x∗ ≤ 0.001935.
This number is was calculated by scaling 0.05 to
the proportional value in the Mach number dimen-
sion.

Algorithm 1 can be used to estimate the cor-
relation at all points in the design space. This
correlation is substituted into Eqs. (4) and (5) to
estimate the mean and variance of the new fused
estimate. Doing this over the entire design space
yields Fig. 16, which shows the XFOIL (yellow),
SU2 (blue), truth model (green), and the reifica-
tion mean (red) and two sigma confidence interval
(black mesh) for estimating the coefficient of lift.

Unlike the previous demonstrations, notable trends are difficult to discern. For this reason plots of each
method were not included. Performance of the method must be evaluated using the mean squared error.

Table 3 shows the mean squared error for each method. The mean squared error was calculated using a
similar method as the previous examples. A square mesh of 40,000 points was created by uniformly sampling
200 points in each dimension. The difference between the truth model and the fused estimate at each point
is squared, and the mean of this value is the mean squared error.

The reification approach yields a significant reduction in error compared to the Covariance Intersection
algorithm for both lift and drag. Note the Covariance Intersection mean squared error is actually greater than
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XFOIL and SU2. This is due to the fact that this is a two dimensional case, so the algorithm incorporates
data from both CL and CD. The reification approach is slightly worse than the zero correlation case for
the drag prediction. This is due to the fact that the true value is always between XFOIL and SU2, so the
ability for reification to predict when the two models are both skewed high or low is not utilized. This allows
the zero correlation case to take a slight advantage in small areas of the design space. Overall, these results
show that reification method has the potential to offer significant increases in accuracy for situations where
multiple models are available.

Coefficient of Lift

Fusion Method MSE (10−2)

XFOIL 2.5385

SU2 0.7431

No Correlation 0.8787

Covariance Intersection 1.2240

Reification 0.2353

Coefficient of Drag

Fusion Method MSE (10−5)

XFOIL 16.057

SU2 2.5407

No Correlation 0.4241

Covariance Intersection 2.2288

Reification 0.5608

Table 3. Mean squared error for XFOIL and SU2 without fusion, the no correlation case, the Covariance Intersection
algorithm, and the reification approach.

V. Conclusion

We have presented a method for fusing information for multiple models of varying fidelity. This approach
estimates the correlation coefficient between the models, if unknown, in a way that is consistent for any
degree of correlation. Our approach relied on several assumptions. Among those were that model inade-
quacy was quantified for any given model, that generating synthetic data by reifying models is a reasonable
approach for enabling the estimation of error terms for simulation models, that a variance weighted aver-
age of correlation coefficient estimates is an appropriate method for fusing correlation information, that an
appropriate neighborhood of the input spaces of the simulators can be identified for correlation estimation,
and that the input spaces for different simulators are identical. We feel these assumptions were necessary to
constrain the broad, complex subject of information fusion. The results support this conclusion and show
that our reification approach has the potential to significantly improve information fusion from multifidelity
information sources.
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